The Class AB Amplifier
We know that we need the base-emitter voltage to be greater than 0.7v for a silicon bipolar transistor to start conducting, so if we were to replace the two voltage divider biasing resistors connected to the base terminals of the transistors with two silicon Diodes, the biasing voltage applied to the transistors would now be equal to the forward voltage drop of the diode. These two diodes are generally called Biasing Diodes or Compensating Diodes and are chosen to match the characteristics of the matching transistors. The circuit below shows diode biasing.
Class AB Amplifier
Class AB Transformerless Output Stage
The Class AB Amplifier circuit is a compromise between the Class A and the Class B configurations. This very small diode biasing voltage causes both transistors to slightly conduct even when no input signal is present. An input signal waveform will cause the transistors to operate as normal in their active region thereby eliminating any crossover distortion present in pure Class B amplifier designs.
A small collector current will flow when there is no input signal but it is much less than that for the Class A amplifier configuration. This means then that the transistor will be “ON” for more than half a cycle of the waveform but much less than a full cycle giving a conduction angle of between 180 to 360o or 50 to 100% of the input signal depending upon the amount of additional biasing used. The amount of diode biasing voltage present at the base terminal of the transistor can be increased in multiples by adding additional diodes in series.
Class B amplifiers are greatly preferred over Class A designs for high-power applications such as audio power amplifiers and PA systems. Like the Class-A Amplifier circuit, one way to greatly boost the current gain ( Ai ) of a Class B push-pull amplifier is to use Darlington transistors pairs instead of single transistors in its output circuitry.
In the next tutorial about Amplifiers we will look more closely at the effects of Crossover Distortion in Class B amplifier circuits and ways to reduce its effect.