The ancestors of bees were wasps in the family Crabronidae, and therefore predators of other insects. The switch from insect prey to pollen may have resulted from the consumption of prey insects which were flower visitors and were partially covered with pollen when they were fed to the wasp larvae. This same evolutionary scenario may also have occurred within the vespoid wasps, where the group known as "pollen wasps" also evolved from predatory ancestors. Up until recently, the oldest non-compression bee fossil had been Cretotrigona prisca in New Jersey amber and of Cretaceous age, a meliponine. A recently reported bee fossil, of the genus Melittosphex, is considered "an extinct lineage of pollen-collecting Apoidea sister to the modern bees", and dates from the early Cretaceous (~100 mya).[3] Derived features of its morphology ("apomorphies") place it clearly within the bees, but it retains two unmodified ancestral traits ("plesiomorphies") of the legs (two mid-tibial spurs, and a slender hind basitarsus), indicative of its transitional status.
The earliest animal-pollinated flowers were pollinated by insects such as beetles, so the syndrome of insect pollination was well established before bees first appeared. The novelty is that bees are specialized as pollination agents, with behavioral and physical modifications that specifically enhance pollination, and are generally more efficient at the task than any other pollinating insect such as beetles, flies, butterflies and pollen wasps. The appearance of such floral specialists is believed to have driven the adaptive radiation of the angiosperms, and, in turn, the bees themselves.
Among living bee groups, the "short-tongued" bee family Colletidae has traditionally been considered the most "primitive", and sister taxon to the remainder of the bees. In the 21st century, however, some researchers have claimed that the Dasypodaidae is the basal group, the short, wasp-like mouthparts of colletids being the result of convergent evolution, rather than indicative of a plesiomorphic condition.[1] This subject is still under debate, and the phylogenetic relationships among bee families are poorly understood.