The normal distribution is remarkably useful because of the central limit theorem. In its most general form, under mild conditions, it states that averages of random variables independently drawn from independent distributions are normally distributed. Physical quantities that are expected to be the sum of many independent processes (such as measurement errors) often have distributions that are nearly normal.[3] Moreover, many results and methods (such as propagation of uncertainty and least squares parameter fitting) can be derived analytically in explicit form when the relevant variables are normally distributed.