operation of a nuclear power plant
Nowadays, the main use given to nuclear energy is the generation of electric power. Nuclear power plants are responsible of doing this process. Almost all nuclear power plants in production are using nuclear fission since the nuclear fusion, despite being under development, is currently unfeasible.
The operation of a nuclear plant is identical to the operation of a thermoelectric power plant operating with coal, oil or gas, except in the way of providing heat to the water for converting this one into steam. In nuclear reactors this process of producing heat is made by the fission reactions of the fuel atoms.
90% of power reactors in the world, or in other words, reactors for electrical energy production, are light water reactors (versions of pressurized water or boiling water). So, we are going to explain more in details how does this type of reactor works.
Operation of a light water nuclear reactor
Functional diagram of a nuclear
The basic principle of the performance of a nuclear power plant is based on obtaining heat energy through the nuclear fission of the atoms´ nucleus from the fuel. This heat energy, already being steam, will be converted into mechanical energy by a turbine, and in the end this mechanical energy will be converted into electrical energy by a generator.
The nuclear reactor is responsible for rising and handling this atomic fission that generates a lot of heat. With this heat the reactor converts water to steam at a high temperature and pressure.
The steam exits the containment building due to the high pressure that it is subjected to, until it reaches the turbine and the steam makes the turbine rotate. At this moment, part of the heat energy of the steam is being transformed into kinetic energy. This turbine is connected to an electric generator whereby the kinetic energy is transformed into electric energy.
Asco nuclear plant
On the other hand, the water vapour that has gone out of the turbine, although it has lost calorific energy, it continues being in gas state and very warm. To re-use water contained in the mentioned water steam, it is necessary to refrigerate it before introducing the water back to the circuit. Once out of the turbine, the steam goes to a condensation chamber where it cools down by being in contact with pipelines of cold water. The water steam becomes liquid and using a pump, water is sent back again to the nuclear reactor so that the cycle can start again.
That is why nuclear plants are always installed near of an abundant supply of cold water (sea, river, lake) to take this water to the condensation chamber. The column of white smoke that can be seen emerging from some plants is the steam raised when this heat exchanges.