]It used to be that high-rpm engines used aluminum or other exotic materials to give rods high strength and light weight. As costs have risen and engine designs evolved, however, builders moved back to steel.
Bryan Neelen of Late Model Engines (LME) explains: “The weight below the wrist pin is not as big of a concern as the weight above it.” This is just one of the reasons for the move by many racers and engine builders back to steel. Cost, durability, and longevity are some of the others.
Another big factor is clearance. In high-rpm racing engines such as Pro Stock, valvetrain stability becomes increasingly important. Pro Stock rules allow for a larger camshaft bore, and big-bore cams provide higher valve lift in addition to improving rigidity and valvetrain stability. The additional material necessary for aluminum rods will often interfere with the rod-to-camshaft clearances. By using a high-strength steel rod, larger cam bores can be utilized without interference.
]It used to be that high-rpm engines used aluminum or other exotic materials to give rods high strength and light weight. As costs have risen and engine designs evolved, however, builders moved back to steel.Bryan Neelen of Late Model Engines (LME) explains: “The weight below the wrist pin is not as big of a concern as the weight above it.” This is just one of the reasons for the move by many racers and engine builders back to steel. Cost, durability, and longevity are some of the others.Another big factor is clearance. In high-rpm racing engines such as Pro Stock, valvetrain stability becomes increasingly important. Pro Stock rules allow for a larger camshaft bore, and big-bore cams provide higher valve lift in addition to improving rigidity and valvetrain stability. The additional material necessary for aluminum rods will often interfere with the rod-to-camshaft clearances. By using a high-strength steel rod, larger cam bores can be utilized without interference.
การแปล กรุณารอสักครู่..
