If Metcalfe's mathematics were right, how can the law be wrong? Metcalfe was correct that the value of a network grows faster than its size in linear terms; the question is, how much faster? If there are n members on a network, Metcalfe said the value grows quadratically as the number of members grows.
We propose, instead, that the value of a network of size n grows in proportion to n log( n ). Note that these laws are growth laws, which means they cannot predict the value of a network from its size alone. But if we already know its valuation at one particular size, we can estimate its value at any future size, all other factors being equal.
The distinction between these laws might seem to be one that only a mathematician could appreciate, so let us illustrate it with a simple dollar example.