the temperature increases, these cohesive forces are reduced with a corresponding reduction in resistance to motion. Since viscosity is an index of this resistance, it follows that the viscosity is reduced by an increase in temperature. In gases, however, the molecules are widely spaced and intermolecular forces negligible. In this case, resistance to relative motion arises due to the exchange of momentum of gas molecules between adjacent layers. As molecules are transported by random motion from a region of low bulk velocity to mix with molecules in a region of higher bulk velocity 1and vice versa2, there is an effective momentum exchange which resists the relative motion between the layers. As the temperature of the gas increases, the random molecular activity increases with a corresponding increase in viscosity. The effect of temperature on viscosity can be closely approximated using two empirical formulas. For gases the Sutherland equation can be expressed as
(1.10)
where C and S are empirical constants, and T is absolute temperature. Thus, if the viscosity is known at two temperatures, C and S can be determined. Or, if more than two viscosities are known, the data can be correlated with Eq. 1.10 by using some type of curve-fitting scheme. For liquids an empirical equation that has been used is
(1.11)
where D and B are constants and T is absolute temperature. This equation is often referred to as Andrade’s equation. As was the case for gases, the viscosity must be known at least for two temperatures so the two constants can be determined. A more detailed discussion of the ef