Motivation It is our dream to understand the principles of animals’ remarkable ability for adaptive motion and to transfer such abilities to a robot. Up to now, mechanisms for generation and control of stereotyped motions and adaptive motions in well-known simple environments have been formulated to some extent and successfully applied to robots. However, principles of adaptation to various environments have not yet been clarified, and autonomous adaptation remains unsolved as a seriously difficult problem in robotics. Apparently, the ability of animals and robots to adapt in a real world cannot be explained or realized by one single function in a control system and mechanism. That is, adaptation in motion is induced at every level from the central nervous system to the musculoskeletal system. Thus, we organized the International Symposium on Adaptive Motion in Animals and Machines (AMAM) for scientists and engineers concerned with adaptation on various levels to be brought together to discuss principles at each level and to investigate principles governing total systems.