It is important to note that the total damaged variable Dw in (2) can be recognized as
the weighted Poisson processes on the interval [0, 1] formulated by Balakrishnan and
Kozubowski (2008). Therefore, most of the results in this paper can be obtained from
this viewpoint. In this paper, we look at the problem in a different way, that is, the
initial number of risk factors in a competitive scenario is subject to damage according
to the binomial probability law. We feel strongly that the length-biased Poisson
cure rate survival function truncated at 0 is more realistic than the Poisson distribution
to represent, for instance, the number of metastasis-component tumor cells for
an individual before the treatment and the untruncated compound discrete distribution
to consider the chance of cure after a given treatment. For the practical purpose,
the destructive weighted Poisson cure rate model formulated in this paper may be
helpful to assess whether the probability of the presence of the j-th competing cause
or the cured proportion are significant to justify the fitness, follow-up time and risk
prediction.
Finally, we believe that the destructive Poisson cure rate models are very helpful
for the global understanding of the variety of infection processes and the carcinogenic
effect of prolonged irradiation during some specified period of time (Klebanov et
al. 1993; Tournoud and Ecochard 2007). Indeed, these will be a subject of a future
research from the classical and Bayesian points of view.
It is important to note that the total damaged variable Dw in (2) can be recognized as
the weighted Poisson processes on the interval [0, 1] formulated by Balakrishnan and
Kozubowski (2008). Therefore, most of the results in this paper can be obtained from
this viewpoint. In this paper, we look at the problem in a different way, that is, the
หมายเลขเริ่มต้นของปัจจัยความเสี่ยงในสถานการณ์แข่งขันอาจมีความเสียหายตาม
พระราชบัญญัติความน่าจะเป็นแบบทวินาม . เรามั่นใจว่าระยะเวลารักษาอัตราการอยู่รอดลำเอียงปัวซอ
ฟังก์ชันตัดที่ 0 มันมีเหตุผลมากกว่าการแจกแจงปัวซง
แทน เช่น จำนวนของส่วนประกอบของการแพร่กระจายเซลล์มะเร็งสำหรับ
an individual before the treatment and the untruncated compound discrete distribution
to consider the chance of cure after a given treatment. For the practical purpose,
the destructive weighted Poisson cure rate model formulated in this paper may be
helpful to assess whether the probability of the presence of the j-th competing cause
or the cured proportion are significant to justify the fitness, follow-up time and risk
prediction.
Finally, we believe that the destructive Poisson cure rate models are very helpful
for the global understanding of the variety of infection processes and the carcinogenic
effect of prolonged irradiation during some specified period of time (Klebanov et
al. 1993; Tournoud and Ecochard 2007). Indeed, these will be a subject of a future
research from the classical and Bayesian points of view.
การแปล กรุณารอสักครู่..
