Just outside the Welsh city of Swansea, the U.K. is planning one of the most innovative power plants ever constructed. It’s not the plant’s size that is striking, though it could ultimately provide power to 155,000 homes for 120 years. It’s the source of its power that breaks ground: tides channeled into an artificially constructed lagoon.
Granted full planning permission this June, the Swansea Bay Tidal Lagoon will be the world’s first ever plant to generate electricity using this method. Should it prove successful, the plant’s template could be adopted worldwide as a way of generating green power while simultaneously providing sea wall protection to coastal communities.
CITYFIXER
CityFixer image
Solutions for an Urbanizing World
GO
Tidal electricity generation in itself is nothing new, of course. Tidal power stations have been producing electricity since France built the world’s first in 1966. Swansea’s tidal lagoon model nonetheless takes the technology to a new stage, making it more adaptable and softening its environmental impact.
Tidal power plants built so far work on the tidal barrage model, where embedded turbines within a dam are strung across a site that has naturally strong and reliable tidal flow, typically an estuary. As the tide flows through, the barrage’s blockage creates a difference in water levels, the resulting pressure pushing water through the turbines to generate electricity. The key limitation of this model is that it only works in sites where tides pass through some form of easily bridgeable gap.
The tidal lagoon model gets round this problem by actually altering the coastline to create the correct conditions. Instead of bridging a river mouth, it requires the construction of what is effectively an artificial harbor, a stretch of water enclosed by a semicircular, rock-clad barrier built up from the seabed. A harbor mouth is created within this barrier, where the inflow and outflow of water powers a set of turbines. Swansea’s barrier will be 5.9 miles long when constructed, with a mouth fitted with up to 26 turbines, a final result outlined in
Just outside the Welsh city of Swansea, the U.K. is planning one of the most innovative power plants ever constructed. It’s not the plant’s size that is striking, though it could ultimately provide power to 155,000 homes for 120 years. It’s the source of its power that breaks ground: tides channeled into an artificially constructed lagoon.Granted full planning permission this June, the Swansea Bay Tidal Lagoon will be the world’s first ever plant to generate electricity using this method. Should it prove successful, the plant’s template could be adopted worldwide as a way of generating green power while simultaneously providing sea wall protection to coastal communities.CITYFIXERCityFixer imageSolutions for an Urbanizing WorldGOTidal electricity generation in itself is nothing new, of course. Tidal power stations have been producing electricity since France built the world’s first in 1966. Swansea’s tidal lagoon model nonetheless takes the technology to a new stage, making it more adaptable and softening its environmental impact.Tidal power plants built so far work on the tidal barrage model, where embedded turbines within a dam are strung across a site that has naturally strong and reliable tidal flow, typically an estuary. As the tide flows through, the barrage’s blockage creates a difference in water levels, the resulting pressure pushing water through the turbines to generate electricity. The key limitation of this model is that it only works in sites where tides pass through some form of easily bridgeable gap.The tidal lagoon model gets round this problem by actually altering the coastline to create the correct conditions. Instead of bridging a river mouth, it requires the construction of what is effectively an artificial harbor, a stretch of water enclosed by a semicircular, rock-clad barrier built up from the seabed. A harbor mouth is created within this barrier, where the inflow and outflow of water powers a set of turbines. Swansea’s barrier will be 5.9 miles long when constructed, with a mouth fitted with up to 26 turbines, a final result outlined in
การแปล กรุณารอสักครู่..
