1. Introduction
When generating electricity using alternative energy sources, it is appealing to incorporate technologies that concentrate solar thermal energy, such as heliostats, parabolic troughs and parabolic dishes connected to a Stirling engine [1]. The latest solar thermal technologies have high costs of installation, operation and maintenance and a decreased solar energy-to-electricity conversion efficiency [2]. Having a Stirling engine at the focal point of a parabolic dish decreases the effects of this efficiency problem by incorporating a solar concentrator with a fixed focal point. Scheffler developed a solar concentrator for solar cookers that are fixed inside the house [3]. This concentrator also has other applications, such as oil extraction [4], distillation [5] and sterilisation applications [6]. To incorporate this technology to generate electricity using Stirling engines, it is necessary to make some adjustments, such as incorporating an azimuth axis that tracks the solar height and form continuously and incorporates the reflector surface with the least amount of imperfections, which is motivated by a study of ray tracing [7].
Different mathematical models have been developed using various mathematical tools and software to optimise the design of assembly systems. The model proposed by Harris and Lenz [8] analysed the thermal behaviour of a parabolic dish concentrator that used the view factor to estimate the amount of radiation reaching the receiver cavity in cylindrical, conical, elliptical and spherical receivers. Additional results for various concentrator geometrical shapes have been provided in Badescu [9]. Shuai et al. [10] used the Monte Carlo method to determine the performance of the radiation concentrated by a parabolic dish receiver for various geometries. Kumar and Reddy [11] presented a software implementation of a CFD (computational fluid dynamics) study to determine the optimal size of the aperture opening area of a spherical cavity coupled to a parabolic dish, which depends on the item’s minimum convection. Chin-Hsiang and Hang-Suin [12] presented a study to optimise geometrical parameters for Stirling engines based on a theoretical analysis. Nepveu et al. [13] presented a model for a parabolic dish concentrator, known as a Eurodish, coupled to a 10 kW Stirling engine.
Halit et al. [14] presented an experimental study on the development of a beta-type Stirling engine for low and moderate temperature heat. Fraser [15] presented a model to estimate the performance of an Alpha-type Stirling engine, and the energy that is transmitted to the receiver is calculated by the equation proposed by Duffie and Beckman [16].
This equation states that the energy concentrated in the receiver of a solar concentrator is directly proportional to the direct radiation, the aperture opening area of the reflector, reflectivity and intercept factor. The latter concept is particularly useful in establishing the dimensions of the concentrator because reducing the receiver aperture opening diameter as a percentage of the solar image and incorporating the thermal model of the receptor defines the dimensions of the receiver for minimum heat loss.
There are different models available to estimate the intercept factor; Jaffe [17] and Badescu [18] presented a model that involves optical, thermal and conversion aspects of energy to optimise the dimensions of the parabolic dish concentrator. Romero [19] developed software for Sandia Laboratories that determined the energy that is intercepted by the circular or rectangular segments of a parabolic dish, which involves the optical aspects of the concentrator. Fraser [15] and Badescu [20] provided the results that are the most appropriate for parabolic dish concentrators that are coupled to a Stirling engine for different capacities. The models proposed by Badescu [21], Stine and Harrigan [22] considered both the influence of varying the receiver aperture opening diameter, which depends on the rim angle and height of the focal point, as well as the standard deviation of the errors caused by the geometrical factors and the optical concentration system.
After reviewing the literature, it was determined that no other previous model can be applied directly to evaluate the performance of an STSC because these models do not incorporate the geometric model of the STSC; therefore, in this study, a new mathematical model for an STSC coupled to a cavity receiver of a Stirling engine is presented. An analysis of the performance is carried out to compare an STSC and a parabolic dish to determine the technical viability of using this technology.
1 . บทนำ
เมื่อผลิตไฟฟ้าโดยใช้พลังงานทดแทน มันจะน่าสนใจที่จะรวมเทคโนโลยีที่มุ่งเน้นพลังงานแสงอาทิตย์ เช่น heliostats , troughs และจานพาราโบลาพาราโบลาที่เชื่อมต่อกับเครื่องยนต์สเตอร์ลิง [ 1 ] ล่าสุดความร้อนพลังงานแสงอาทิตย์เทคโนโลยีมีค่าใช้จ่ายสูงในการติดตั้งการดำเนินงานและการบำรุงรักษาและค่าประสิทธิภาพการแปลงไฟฟ้าพลังงานแสงอาทิตย์ [ 2 ] มีเครื่องยนต์สเตอร์ลิงที่จุดโฟกัสของจานพาราโบลิก ลดผลกระทบของปัญหาประสิทธิภาพโดยรวมหัวแสงอาทิตย์ที่มีกำหนดจุดโฟกัส scheffler พัฒนาหัวแสงอาทิตย์หม้อหุงแสงอาทิตย์ที่ได้รับการแก้ไขในบ้าน [ 3 ]สมาธินี้ยังมีการใช้งานอื่น ๆเช่น การสกัดน้ำมัน [ 4 ] , การกลั่นและการประยุกต์ใช้ sterilisation [ 5 ] [ 6 ] รวมเทคโนโลยีนี้เพื่อสร้างกระแสไฟฟ้าโดยใช้เครื่องยนต์สเตอร์ลิง , มันเป็นสิ่งจำเป็นเพื่อให้มีการปรับปรุงเช่นการรวมเป็นแกนอะซิมุทติดตามความสูงพลังงานแสงอาทิตย์และรูปแบบอย่างต่อเนื่อง และประกอบด้วยพื้นผิวสะท้อนกับจำนวนเงินที่น้อยที่สุดของความไม่สมบูรณ์ ซึ่งเป็นแรงจูงใจจากการศึกษาติดตาม [ 7 ] .
ที่แตกต่างกันแบบจำลองทางคณิตศาสตร์ได้ถูกพัฒนาขึ้นโดยใช้เครื่องมือทางคณิตศาสตร์และซอฟต์แวร์ต่าง ๆ เพื่อเพิ่มประสิทธิภาพ การออกแบบระบบประกอบรูปแบบการนำเสนอ โดย แฮร์ริส และเลนส์ [ 8 ] วิเคราะห์พฤติกรรมทางความร้อนของจานพาราโบลิก หัวที่ใช้องค์ประกอบมุมมองการประมาณการปริมาณของรังสีถึงตัวรับสัญญาณช่องทรงกระบอก กรวยและทรงกลมรูปไข่ผู้รับ ผลลัพธ์เพิ่มเติมสำหรับหัวรูปทรงเรขาคณิตต่าง ๆมีให้ใน Badescu [ 9 ] ฉ่วย et al .[ 10 ] ใช้วิธีมอนติคาร์โล เพื่อตรวจสอบประสิทธิภาพของรังสีเข้มข้นโดยจานรับสัญญาณจานดาวเทียมสำหรับรูปทรงเรขาคณิตต่างๆ คูมาร์ และเรดดี้ [ 11 ] แสดงการติดตั้งซอฟต์แวร์ของ CFD ( คำนวณพลศาสตร์ของไหล ) การศึกษาหาขนาดที่เหมาะสมของพื้นที่ช่องเปิดของโพรงทรงกลมคู่กับจานรูปโค้ง ,ซึ่งขึ้นอยู่กับรายการแบบขั้นต่ำ เซียง ชิน และแขวน suin [ 12 ] นำเสนอการศึกษาการปรับพารามิเตอร์ทางเรขาคณิตสำหรับเครื่องยนต์สเตอร์ลิงโดยใช้การวิเคราะห์ทางทฤษฎี nepveu et al . [ 13 ] นำเสนอรูปแบบหัวจานรูปโค้ง เรียกว่า eurodish คู่กับ 10 กิโลวัตต์เครื่องยนต์สเตอร์ลิง .
halit et al .[ 14 ] นำเสนอการทดลองการพัฒนาเครื่องยนต์สเตอร์ลิงชนิดเบต้าต่ำ และปานกลาง ความร้อน อุณหภูมิ เฟรเซอร์ [ 15 ] เสนอแบบจำลองเพื่อประเมินประสิทธิภาพของอัลฟ่าประเภทเครื่องยนต์สเตอร์ลิง , และพลังงานที่ส่งไปยังผู้รับคำนวณโดยสมการที่เสนอโดยดัฟฟี่และเบคแมน
[ 16 ]สมการนี้ระบุว่า พลังงานที่เข้มข้นในตัวรับสัญญาณของหัวแสงอาทิตย์จะเป็นสัดส่วนโดยตรงกับรังสีโดยตรง รูรับแสงเปิดพื้นที่ของแสงการสะท้อนแสงและปัจจัยขัดขวางแนวคิดหลังจะเป็นประโยชน์อย่างยิ่งในการสร้างมิติของหัวเพราะการรับรูเปิดขนาดเส้นผ่าศูนย์กลางเป็นเปอร์เซ็นต์ของภาพแสงอาทิตย์และผสมผสานรูปแบบความร้อนของตัวรับ กำหนดขนาดของตัวรับสัญญาณสำหรับการสูญเสียความร้อนต่ำสุด
มีรูปแบบแตกต่างกันของการประมาณค่าปัจจัยการตัด ;เจฟฟี่ [ 17 ] และ Badescu [ 18 ] เสนอแบบจำลองที่เกี่ยวข้องกับแสงด้านความร้อนและการแปลงพลังงานในการปรับขนาดของหัวจานรูปโค้ง . โรเมโร [ 19 ] พัฒนาซอฟแวร์แซนเดียห้องปฏิบัติการที่กำหนดพลังงานที่สกัดจากส่วนที่เป็นวงกลมหรือสี่เหลี่ยมของจานพาราโบลา ซึ่งเกี่ยวข้องกับด้านแสงของหัว .เฟรเซอร์ [ 15 ] และ Badescu [ 20 ] ให้ผลลัพธ์ที่เหมาะสมที่สุดสำหรับ concentrators จานพาราโบลาที่คู่กับเครื่องยนต์สเตอร์ลิงสำหรับความจุที่แตกต่างกัน รุ่นที่เสนอโดย Badescu [ 21 ] , [ 22 ] และ ฮาร์ริแกนสไตน์พิจารณาอิทธิพลของการรับรูเปิดขนาด ซึ่งขึ้นอยู่กับขอบมุม และความสูงของจุดโฟกัสเป็นส่วนเบี่ยงเบนมาตรฐานของความคลาดเคลื่อนที่เกิดจากปัจจัยทางเรขาคณิตและระบบแสงความเข้มข้น .
หลังจากทบทวนวรรณกรรม พบว่าไม่มีรุ่นก่อนหน้าอื่น ๆสามารถใช้ได้โดยตรง เพื่อประเมินผลการปฏิบัติงานของ stsc เพราะรุ่นนี้ไม่รวมรูปแบบทางเรขาคณิตของ stsc ดังนั้น ในการศึกษานี้ ,แบบจำลองทางคณิตศาสตร์สำหรับการ stsc คู่กับช่องรับสัญญาณของเครื่องยนต์สเตอร์ลิงคือแสดง การวิเคราะห์ประสิทธิภาพของการเปรียบเทียบและการ stsc จานพาราโบลาเพื่อตรวจสอบความมีชีวิตทางเทคนิคของการใช้เทคโนโลยีนี้
การแปล กรุณารอสักครู่..
