A cost effective, facile and scalable method to fabricate the stable broadband antireflective (AR) surface on glass substrates for solar energy applications is still a challenge. In this paper, we have demonstrated a simple and non-lithographic method to fabricate the broadband quasi-omnidirectional AR nanoporous surface on glass substrates by hydrofluoric (HF) acid based vapor phase etching method. Both-sides etched sodalime glass substrate under optimized conditions showed broadband enhanced transmittance with maximum total transmittance of ~97% at 598 nm. The measured transmittance exceeds by ~5.4% as compared to plain glass (91.6%). Field emission scanning electron microscopy results showed that an AR nanoporous surface with graded porosity was formed on sodalime glass substrate after etching. Due to the graded porosity, the fabricated nanoporous surface on sodalime glass substrate showed excellent broadband enhanced transmittance, and exhibited low reflectance