Epiphytic orchids found in tropical environments are directly or indirectly exposed to natural air currents and solar radiation and receive only intermittent rains. In addition to coping with rapid changes in natural air current and light intensity, there is also the need for epiphytic orchids to adapt to periodic drought [1]. Many epiphytic orchids develop morphological features to conserve and/or store water to cope with drought. A morphological feature includes the presence of swollen stems called pseudobulbs that serve as a reserve for water and carbohydrates [2].
Among the many abiotic factors involved in the survival of epiphytes, water availability is probably the most important environmental factor limiting growth and survival of epiphytes [3]. Thus, tolerance to water deficit is a decisive factor in their survival. The presence of the pseudobulb may facilitate a slow reduction in the leaf water content and decline in water potential during a period of drought [1, 4, 5]. The pseudobulb is characterized by the presence of very thick cuticle, absence of stomata, and the abundance of water-storing cells [6]. This makes the pseudobulb an integral organ in the survival and growth of orchids [7, 8]. This is even more so for green pseudobulbs (GPSB) which can photosynthesise and hence contribute positively to carbon balance.
Although large amounts of water and carbohydrates are stored in the GPSB, many epiphytic orchids are sensitive to prolonged water deficit [9, 10]. Under conditions of water deficit, photosynthetic capacities in terms of utilization of radiant energy and carbon fixation of GL and GPSB may be reduced under drought stress. However, photosynthetic responses of GL and GPSB of CAM orchid plants to drought stress are poorly understood. The main objective of this study was first to investigate the effects of drought stress on the water status of both GL and GPSB of CAM orchid Cattleya laeliocattleya Aloha Case. To investigate the water status of plants, WC was determined for both GPSB and GL after the plants were subjected to drought stress. The massive reduction of WC in plants can have a negative impact on cell expansion and cell growth, resulting in overall growth reduction [11]. Compared to WC, RWC is considered a better indicator of plant water status, which measures the absolute content of water in fresh plant tissues relative to the maximum WC in the tissues at full turgidity [11]. It has been reported that well-watered plants have RWC values between 85% and 95% whereas RWC can decrease up to 40% in severely drought-stressed plants [12]. Therefore, RWC was determined but only for GL as it is not feasible to do this measurement for GPSB. In this study, photosynthetic utilization of radiant energy was also addressed through the measurements of photosynthetic pigments and the various chlorophyll fluorescence parameters [13]. The decrease in photosynthetic light use efficiency caused by drought could affect the carbon fixation measured by CAM acidity, and ultimately, the growth and development of plants [14, 15]. Hence, CAM acidity was also determined after the plants were subjected to drought stress.
Epiphytic กล้วยไม้ที่พบในเขตร้อนชื้นมีทั้งทางตรง หรือทางอ้อมสัมผัสกับรังสีแสงอาทิตย์และกระแสลมธรรมชาติ และได้รับฝนที่ไม่ต่อเนื่องเท่านั้น นอกจากเผชิญกับการเปลี่ยนแปลงอย่างรวดเร็วในธรรมชาติอากาศความเข้มแสง และปัจจุบัน มียังต้องการกล้วยไม้ epiphytic ปรับตัวรับกับภัยแล้งเป็นครั้งคราว [1] กล้วยไม้ epiphytic หลายพัฒนาคุณลักษณะของการรักษา / เก็บน้ำเพื่อรับมือกับภัยแล้ง ของคุณลักษณะรวมของลำต้นบวมเรียกว่า pseudobulbs ซึ่งทำหน้าที่เป็นตัวสำรองน้ำและคาร์โบไฮเดรต [2] ระหว่างหลาย abiotic ปัจจัยเกี่ยวข้องกับความอยู่รอดของเลี้ยง น้ำพร้อมใช้งานได้คงปัจจัยสิ่งแวดล้อมสำคัญที่จำกัดการเจริญเติบโตและอยู่รอดของเลี้ยง [3] ดังนั้น ยอมรับการขาดดุลของน้ำเป็นปัจจัยเด็ดขาดในการอยู่รอดของพวกเขา ของ pseudobulb ที่อาจช่วยลดปริมาณน้ำใบช้า และลดลงในน้ำที่อาจเกิดขึ้นช่วงภัยแล้ง [1, 4, 5] Pseudobulb ที่เป็นลักษณะของการขาดงานของ stomata ตัดแต่งหนังหนามาก และอุดมสมบูรณ์ของน้ำที่เก็บเซลล์ [6] นี้ทำ pseudobulb ที่อวัยวะสำคัญในการอยู่รอดและเจริญเติบโตของกล้วยไม้ [7, 8] ดังนั้นยิ่งสำหรับ pseudobulbs สีเขียว (GPSB) ซึ่งสามารถ photosynthesise และจึง มีส่วนร่วมบวกดุลคาร์บอน อยู่ Although large amounts of water and carbohydrates are stored in the GPSB, many epiphytic orchids are sensitive to prolonged water deficit [9, 10]. Under conditions of water deficit, photosynthetic capacities in terms of utilization of radiant energy and carbon fixation of GL and GPSB may be reduced under drought stress. However, photosynthetic responses of GL and GPSB of CAM orchid plants to drought stress are poorly understood. The main objective of this study was first to investigate the effects of drought stress on the water status of both GL and GPSB of CAM orchid Cattleya laeliocattleya Aloha Case. To investigate the water status of plants, WC was determined for both GPSB and GL after the plants were subjected to drought stress. The massive reduction of WC in plants can have a negative impact on cell expansion and cell growth, resulting in overall growth reduction [11]. Compared to WC, RWC is considered a better indicator of plant water status, which measures the absolute content of water in fresh plant tissues relative to the maximum WC in the tissues at full turgidity [11]. It has been reported that well-watered plants have RWC values between 85% and 95% whereas RWC can decrease up to 40% in severely drought-stressed plants [12]. Therefore, RWC was determined but only for GL as it is not feasible to do this measurement for GPSB. In this study, photosynthetic utilization of radiant energy was also addressed through the measurements of photosynthetic pigments and the various chlorophyll fluorescence parameters [13]. The decrease in photosynthetic light use efficiency caused by drought could affect the carbon fixation measured by CAM acidity, and ultimately, the growth and development of plants [14, 15]. Hence, CAM acidity was also determined after the plants were subjected to drought stress.
การแปล กรุณารอสักครู่..
