4.3 Model Assignment
Let us take a look at the coin-toss experiment more closely. What do we mean when we say “the
probability of Heads" or write lP(Heads)? Given a coin and an itchy thumb. how do we go about
finding what lP(Heads) should be?
4.3.1 The Measure Theory Approach
This approach states that the way to handle lP(Heads) is to define a mathematical function. called
a probability measure, on the sample space. Probability measures satisfy certain axioms (to be
introduced later) and have special mathematical properties, so not just any mathematical function
will do. But in any given physical circumstance there are typically all sorts of probability measures
from which to choose. and it is left to the experimenter to make a reasonable choice - usually based
on considerations of objectivity. For the tossing coin example. a valid probability measure assigns
probability p to the event {Heads}. where p is some number 0 ≤ p ≤ l. An experimenter that
wishes to incorporate the symmetry of the coin would choose p = l/2 to balance the likelihood of
{Heads} and {Tails}.
Once the probability measure is chosen (or determined), there is not much left to do. All
assignments of probability are made by the probability function. and the experimenter needs only to
plug the event {Heads} into to the probability function to find lP(Heads). In this way, the probability
of an event is simply a calculated value. nothing more, nothing less. Of course this is not the whole
story; there are many theorems and consequences associated with this approach that will keep
us occupied for the remainder of this book. The approach is called measure theory because the
measure (probability) of a set (event) is associated with how big it is (how likely it is to occur).
The measure theory approach is well suited for situations where there is symmetry to the exper-
iment. such as flipping a balanced coin or spinning an arrow around a circle with well-defined pie
slices. It is also handy because of its mathematical simplicity. elegance. And flexibility. There are
literally volumes of information that one can prove about probability measures. and the cold rules
of mathematics allow us to analyze intricate probabilistic problems with vigor.
The large degree of flexibility is also a disadvantage. however. When symmetry fails it is
not always obvious what an "objective" choice of probability measure should be; for instance,
what probability should we assign to {Heads} if we spin the coin rather than flip it? (It is not
1/2.) Furthermore. the mathematical rules are restrictive when we wish to incorporate subjective
knowledge into the model. knowledge which changes over time and depends on the experimenter,
such as personal knowledge about the properties of the specific coin being flipped, or of the person
doing the flipping.
The mathematician who revolutionized this way to do probability theory was Andrey Kol-
mogorov, who published a landmark monograph in 1933. See
http : //www- history . mcs . st— andrews . ac .uk/Mathematicians/Kolmogorov .html
for more information.
4.3.2 Relative Frequency Approach
This approach states that the way to determine lP(Heads) is to flip the coin repeatedly. in exactly the same way each time. Keep a tally of the number of flips and the number of Heads observed. Then a good approximation to lP(Heads) will be
lP(Heads) ≈(number of observed Heads)/(total number of flips)
The mathematical underpinning of this approach is the celebrated Law of Large Numbers. which may be loosely described as follows. Let E be a random experiment in which the event A either does or does not occur. Perform the experiment repeatedly, in an identical manner. in such a way that the successive experiments do not influence each other. After each experiment. Keep a running tally of whether or not the event A occurred. Let S_n count the number of times that A occurred in the n experiments. Then the law of large numbers says that
S_n/n→lP(A) as n→ ∞
As the reasoning goes. to learn about the probability of an event A we need only repeat the random experiment to get a reasonable estimate of the probability’s value, and if we are not satisfied with our estimate then we may simply repeat the experiment more times all the while confident that with more and more experiments our estimate will stabilize to the true value.
The frequentist approach is good because it is relatively light on assumptions and does not worry about symmetry or claims of objectivity like the measure-theoretic approach does. lt is perfect for the spinning coin experiment. One drawback to the method is that one can never know the exact value of a probability. only a long-run approximation. It also does not work well with experiments that can not be repeated indefinitely. say. the probability that it will rain today. The chances that you get will get an A in your Statistics class. or the probability that the world is destroyed by nuclear war.
This approach was espoused by Richard von Mises in the early twentieth century. and some of his main ideas were incorporated into the measure theory approach. See
http : //www—history . mcs . st— andrews . ac .uk/Biographies/Mises.htrrt1 for more.
4.3.3 The Subjective Approach
The subjective approach interprets probability as the experimenter’s degree of belief that the event will occur. The estimate of the probability of an event is based on the totality of the individual’s knowledge at the time. As new information becomes available. The estimate is modified accordingly to best reflect his/her current knowledge. The method by which the probabilities are updated is commonly done with Bayes" Rule. discussed in Section 4.8.
So for the coin toss example. a person may have lP(Heads) = l/Z in the absence of additional information. But perhaps the observer knows additional information about the coin or the thrower that would shift the probability in a certain direction. For instance, parlor magicians may be trained to be quite skilled at tossing coins. and some are so skilled that they may toss a fair coin and get nothing but Heads. indefinitely. I have seen this. lt was similarly claimed in Bringing Down the House [65] that MIT students were accomplished enough with cards to be able to cut a deck to the same location. every single time. In such cases. one clearly should use the additional information to assign lP(Heads) away from the symmetry value of l/2.
This approach works well in situations that cannot be repeated indefinitely, for example, to assign your probability that you will get an A in this class. the chances of a devastating nuclear war. or the likelihood that a cure for the common cold will be discovered. The roots of subjective probability reach back a long time. See
http : //en . wikipedia . org/wiki/Subj ective_probabi1ity
for a short discussion and links to references about the subjective approach.
4.3.4 Equally Likely Model(ELM)
We have seen several approaches to the assignment of a probability model to a given random experiment and they are very different in their underlying interpretation. But they all cross paths when it comes to the equally likely model which assigns equal probability to all elementary outcomes of the experiment.
The ELM appears in the measure theory approach when the experiment boasts symmetry of some kind. If symmetry guarantees that all outcomes have equal “size” ,and if outcomes with equal “size” should get the same probability, then the ELM is a logical objective choice for the experimenter. Consider the balanced 6-sided die, the fair coin, or the dart board with equal-sized wedges.
The ELM appears in the subjective approach when the experimenter resorts to indifference or ignorance with respect to his/her knowledge of the outcome of the experimenter has on prior knowledge to suggest that (s) he prefer Heads over Tails, then it is reasonable for the him/her to assign equal subjective probability to both possible outcomes.
The ELM appears in the relative frequency approach as a fascinating fact of Nature: when we flip balanced coins over and over again, we observe that the proportion of times that coin comes up Heads tends to 1/2. Of course if we assume that the measure theory applies then we can prove that the sample proportion must tend to 1/2 as expected, but that is putting the cart before the horse, in a manner of speaking.
The ELM is only available when there are finitely many elements in the sample space.
4.3.5 How to do it with R
In the prob package, a probability space is an object space is an object of outcomes S and a vector of probabilities (called “probs”) with entries that correspond to each outcome in S. When S is a data frame, we may simply add a column called probs to S and we will be finished; the probability space will simply be a data frame which we may call S. In the case that S is a list, we may combine the outcomes and probs into a larger list, space; it will have two components: outcomes and probs. The only requirements we need are for the entries of probs to be nonnegative and sum (probs) to be one.
To accomplish this in R, we may use the probspace function. The general syntax is probspace (x,probs),where x is a sample space of outcomes and probs is a vector ( of the same length as the number of outcomes in x ). The specific choice of probs depends on the context of the problem, and some examples follow to demonstrate some of the more common choices.
Example 4.4. The Equally Likely Model asserts that every outcome of the sample space has the Same probability, thus, if a sample space has n outcomes, then probs would be a vector of length n with identical entries l/n. The quickest way to generate probs is with the rep function. We will start with the experiment of rolling a die, so that n = 6. We will construct the sample space, generate the probs ve
4.3 รุ่นกำหนดเรามาดูการทดลองโยนเหรียญมาก ทำเราหมายถึงอะไรเมื่อเราบอกว่า "_FITTEDความน่าเป็นประมุข" หรือเขียน lP(Heads) ได้รับเหรียญและนิ้วหัวแม่มือคัน เราไปเกี่ยวกับอย่างไรค้นหา lP(Heads) อะไรควรหรือไม่4.3.1 การวัดทฤษฎีวิธีวิธีการนี้ระบุว่า วิธีการจัดการ lP(Heads) คือการ กำหนดฟังก์ชันทางคณิตศาสตร์ เรียกว่าความน่าเป็นหน่วยวัด พื้นที่ตัวอย่าง ความน่าเป็นมาตรการตอบสนองสัจพจน์บางอย่างของการนำมาใช้ในภายหลัง) และมีคุณสมบัติทางคณิตศาสตร์พิเศษ ฟังก์ชันดังนั้นไม่เพียงการทางคณิตศาสตร์จะทำ แต่ไม่ว่ากรณีใด ๆ ทางกายภาพให้ มีโดยทั่วไปของความน่าเป็นมาตรการที่เลือก และกลับไป experimenter ให้เลือก - มักจะอ้างอิงในการพิจารณาของปรวิสัย เช่นการโยนเหรียญ กำหนดให้วัดความถูกต้องp น่าเป็นเหตุการณ์ {หัว} โดยที่ p คือ บางเลข 0 ≤ p ≤ l Experimenter การที่ความปรารถนารวมสมมาตรของเหรียญจะเลือก p = l/2 สมดุลของ{หัว} และ {หาง} เมื่อวัดความน่าเป็นการเลือก (หรือขึ้น), มีไม่มากด้านการทำการ ทั้งหมดฟังก์ชันความน่าเป็นการกำหนดความน่าเป็น และ experimenter ที่จำเป็นเท่านั้นต่อเหตุการณ์ {หัว} เป็นฟังก์ชันความน่าเป็นการค้นหา lP(Heads) ด้วยวิธีนี้ ความน่าเป็นเหตุการณ์เป็นเพียงค่าที่คำนวณ ไม่มาก ไม่น้อยกว่า แน่นอนนี่ไม่ใช่ทั้งหมดเรื่องราว มีหลายทฤษฎีและผลกระทบที่เกี่ยวข้องกับวิธีการนี้ไว้เราครอบครองส่วนที่เหลือของหนังสือเล่มนี้ วิธีการเรียกว่าทฤษฎีการวัดเนื่องจากการวัด (ความน่าเป็น) ของชุด (เหตุการณ์) ที่สัมพันธ์กับขนาดเป็น (วิธีแนวโน้มที่จะเกิดขึ้น) วิธีทฤษฎีการวัดเหมาะสำหรับสถานการณ์ไม่สมมาตรกับ exper -iment เช่นการพลิกเหรียญสมดุล หรือการปั่นลูกศรวงกลมด้วยวงกลมโดยรอบชิ้น ก็ยังมีประโยชน์เนื่องจากความเรียบง่ายทางคณิตศาสตร์ สง่างาม และความยืดหยุ่น มีอักษรไดรฟ์ข้อมูลสามารถพิสูจน์เกี่ยวกับความน่าเป็นวัด และกฎการเย็นของคณิตศาสตร์ให้เราวิเคราะห์ปัญหา probabilistic ซับซ้อนกับความแข็งแรง ระดับใหญ่ของความยืดหยุ่นก็เป็นรอง อย่างไรก็ตาม เมื่อไม่สมมาตรก็ได้ไม่ชัดเจนเสมอว่าเป็น "วัตถุประสงค์" ควรเลือกวัดความน่าเป็น ตัวอย่างความน่าเป็นอะไรควรเรากำหนดให้ {หัว} ถ้าเราหมุนเหรียญไม่ ใช่พลิกหรือไม่ (ไม่ได้อยู่1/2.) นอกจากนี้ยัง กฎทางคณิตศาสตร์จะเข้มงวดเมื่อเราต้องการรวมตามอัตวิสัยความรู้ในรูปแบบ ความรู้ที่เปลี่ยนแปลงช่วงเวลา และขึ้นอยู่กับ experimenterเช่นส่วนบุคคลความรู้เกี่ยวกับคุณสมบัติ ของการพลิกเหรียญเฉพาะ หรือบุคคลทำการพลิก นักคณิตศาสตร์ที่ revolutionized วิธีนี้น่าเป็นทฤษฎี Andrey Kol-mogorov ใคร monograph แลนด์มาร์คในปี 1933 ดูhttp: //www-ประวัติ เอ็มซี เซนต์ — แอนดรูวส์ ac .uk/Mathematicians/Kolmogorov .htmlสำหรับข้อมูลเพิ่มเติม4.3.2 วิธีการความถี่สัมพัทธ์วิธีการนี้ระบุว่า วิธีการกำหนด lP(Heads) จะ flip เหรียญซ้ำ ๆ ว่าเดียวทางแต่ละครั้ง เก็บรวมของหมายเลข flips และหมายเลขของหัวตรวจสอบ แล้ว จะสามารถประมาณการดี lP(Heads)≈ lP(Heads) (หมายเลขของหัวสังเกต) / (จำนวน flips)Underpinning คณิตศาสตร์ของวิธีการนี้เป็นตัวเลขขนาดใหญ่ของกฎหมายเฉลิมฉลอง ซึ่งอาจสามารถซึ่งอธิบายได้ดังนี้ ให้ E เป็นการทดลองสุ่มซึ่งเหตุการณ์ A ไม่ หรือเกิดขึ้นได้ ทำการทดลองซ้ำ ๆ ในลักษณะเหมือนกัน ในลักษณะที่การทดลองต่อ ๆ มาทำไม่ influence กัน หลังจากทดลองแต่ละ ให้รวมการทำงานของเหตุการณ์ A เกิดขึ้นหรือไม่ ให้นับจำนวนครั้งที่ A ที่เกิดขึ้นในการทดลอง n S_n แล้ว ตัวเลขขนาดใหญ่ของกฎหมายบอกว่า S_n/n→lP(A) เป็น n→ ∞เหตุผลที่เป็นไป การเรียนรู้เกี่ยวกับความน่าเป็นของเหตุการณ์ A เราเพียงต้องการทำซ้ำทดลองสุ่มจะได้รับการประเมินที่สมเหตุสมผลของค่าความน่าเป็น และถ้าเราไม่ satisfied มีการประเมินของเรา แล้วเราอาจเพียงแค่ทำซ้ำทดลองครั้งในขณะ confident ที่มีมาก experiments ประเมินของเราจะมุ่งถึงคุณค่าแท้จริงวิธีการ frequentist ได้ดีเนื่องจากอยู่ใกล้ไฟบนสมมติฐาน และไม่ต้องกังวลเกี่ยวกับสมมาตรหรือปรวิสัยเหมือนวิธีวัด theoretic ไม่กล่าวอ้าง ลายเหมาะสำหรับการปั่นเหรียญทดลอง คืนหนึ่งกับวิธีการไม่สามารถทราบค่าที่แน่นอนของความน่าเป็น เฉพาะความยาวประมาณการ มันยังไม่ได้ดีกับการทดลองที่ไม่สามารถซ้ำ indefinitely บอกว่า ความน่าเป็นที่ว่าฝนจะตกวันนี้ โอกาสที่คุณจะได้รับ A ในสถิติของคุณ หรือความเป็นไปได้ที่โลกถูกทำลาย ด้วยสงครามนิวเคลียร์ วิธีการนี้คือ espoused โดยริชาร์ดฟอน Mises ในศตวรรษที่ยี่สิบต้น และบางความคิดหลักของเขาถูกรวมอยู่ในวิธีทฤษฎีการวัด ดูhttp: //www—history เอ็มซี เซนต์ — แอนดรูวส์ .uk/Biographies/Mises.htrrt1 ac สำหรับข้อมูลเพิ่มเติม4.3.3 การวิธีตามอัตวิสัยวิธีตามอัตวิสัยแปลความน่าเป็นเป็นของ experimenter ระดับของความเชื่อที่ว่า เหตุการณ์จะเกิดขึ้น การประเมินความน่าเป็นของเหตุการณ์จะขึ้นอยู่กับผลของความรู้ของแต่ละบุคคลเวลา เป็นข้อมูลใหม่จะพร้อมใช้งาน การประเมินการ modified ตามในที่สุด reflect เขา/เธอรู้ปัจจุบัน วิธีการที่กิจกรรมที่จะปรับปรุงโดยทั่วไปจะกระทำกับ Bayes"กฎ กล่าวถึงในหัวข้อ 4.8ดังนั้น เหรียญโยนตัวอย่าง บุคคลอาจมี lP(Heads) = l/Z ในกรณีข้อมูลเพิ่มเติมได้ แต่บางทีนักการที่รู้ข้อมูลเพิ่มเติมเกี่ยวกับเหรียญหรือ thrower ที่จะเปลี่ยนความเป็นไปในทิศทางบางอย่าง ตัวอย่าง ร้านมายากลอาจฝึกค่อนข้างช่าง tossing เหรียญ และมีผู้เชี่ยวชาญเพื่อว่า พวกเขาอาจโยนเหรียญธรรม และได้รับอะไรแต่หัว indefinitely ฉันได้เห็นนี้ ลายได้ในทำนองเดียวกันอ้างว่า Bringing ลงบ้าน [65] ที่เรียน MIT ได้พอกับบัตรสามารถตัดดาดฟ้ามา ทุกครั้งเดียว ในกรณีดังกล่าว หนึ่งอย่างชัดเจนควรใช้ข้อมูลเพิ่มเติมการกำหนด lP(Heads) จากค่าสมมาตร l/2 วิธีการนี้ทำงานได้ดีในสถานการณ์ที่ไม่สามารถทำซ้ำโดยไม่จำกัดเวลา ตัวอย่าง การกำหนดความน่าเป็นของคุณว่า คุณจะได้รับ A ในคลาสนี้ โอกาสของสงครามนิวเคลียร์ทำลายล้าง หรือโอกาสที่จะพบโรคสำหรับเย็นทั่วไป รากของความน่าเป็นตามอัตวิสัยถึงกลับเป็นเวลานาน ดูhttp: //en วิกิพีเดีย องค์กร/wiki/Subj ective_probabi1ityการสนทนาสั้น ๆ และเชื่อมโยงกับข้อมูลอ้างอิงเกี่ยวกับวิธีตามอัตวิสัย4.3.4 เท่าแนวโน้ม Model(ELM)เราได้เห็นหลายวิธีในการกำหนดรูปแบบความน่าเป็นการทดลองสุ่มที่กำหนด และจะมีความแตกต่างในการตีความแบบ แต่พวกเขาทั้งหมดระหว่างเส้นเมื่อมาถึงโอกาสเท่า ๆ กันรุ่นใดให้พอ ๆ กับผลระดับประถมศึกษาทั้งหมดของการทดลองเอล์มปรากฏในวิธีทฤษฎีวัดเมื่อทดลองมีสมมาตรบางรูป ถ้าสมมาตรรับประกันว่า ผลทั้งหมดได้เท่ากับ "ขนาด" และถ้าผลลัพธ์เท่ากับ "ขนาด" ควรได้รับความเป็นไปได้เหมือนกัน แล้วเอล์ม ตรรกะทางเลือกวัตถุประสงค์สำหรับ experimenter ที่ พิจารณาสมดุล 6 หน้าตาย เหรียญธรรม หรือลูกดอก มีขนาดเท่ากับ wedgesเอล์มปรากฏในวิธีตามอัตวิสัย เมื่อ experimenter ที่รีสอร์ทให้ท่านไม่รู้เกี่ยวกับเขา/เธอรู้ผลลัพธ์ของ experimenter ที่มีความรู้เดิม (s) ที่แนะนำคงต้องหัวไปหาง แล้วจึงเหมาะสมสำหรับเขาให้เธอกำหนดตามอัตวิสัยพอ ๆ กับผลลัพธ์ที่เป็นไปได้ทั้งนั้นเอล์มปรากฏในวิธีความถี่สัมพัทธ์เป็นความจริงที่น่าสนใจของธรรมชาติ: เมื่อเราพลิกเหรียญสมดุลมากกว่า และกว่าอีก เราสังเกตว่า สัดส่วนของเวลาที่เหรียญขึ้นหัวมีแนวโน้มที่ 1/2 แน่นอนถ้าเราสมมติว่า ใช้ทฤษฎีวัด แล้วเราสามารถพิสูจน์ที่ สัดส่วนตัวอย่างมักต้อง 1/2 ตามที่คาดไว้ ได้ที่จะวางสินค้าในรถเข็นก่อนม้า ในลักษณะของการพูดเอล์มได้เฉพาะเมื่อมี finitely องค์ประกอบจำนวนมากในพื้นที่ตัวอย่าง4.3.5 การทำกับ R In the prob package, a probability space is an object space is an object of outcomes S and a vector of probabilities (called “probs”) with entries that correspond to each outcome in S. When S is a data frame, we may simply add a column called probs to S and we will be finished; the probability space will simply be a data frame which we may call S. In the case that S is a list, we may combine the outcomes and probs into a larger list, space; it will have two components: outcomes and probs. The only requirements we need are for the entries of probs to be nonnegative and sum (probs) to be one. To accomplish this in R, we may use the probspace function. The general syntax is probspace (x,probs),where x is a sample space of outcomes and probs is a vector ( of the same length as the number of outcomes in x ). The specific choice of probs depends on the context of the problem, and some examples follow to demonstrate some of the more common choices. Example 4.4. The Equally Likely Model asserts that every outcome of the sample space has the Same probability, thus, if a sample space has n outcomes, then probs would be a vector of length n with identical entries l/n. The quickest way to generate probs is with the rep function. We will start with the experiment of rolling a die, so that n = 6. We will construct the sample space, generate the probs ve
การแปล กรุณารอสักครู่..
