proposition 48
if the square on one of the side of a triangle is equal
to the (sum of the) squares on the two remaining side of
the triangle then the angle contained by the two remaining
sides of the triangle is a right-angle.
for let the square on one of the sides,BC , of triangle
ABC be equal to the (sum of the) squares on the sides
BA and AC . i say that angle BAC is a right-angle.
foe let AD have been drawn from point A at right-angles
to the triangle-line AC [prop.1.11] , and let AD
have been made equal to BA [prop.1.3], and let DC
have been joined. since DA is equal to AB, let the
square on AC have been added to both . thus, the (sum of the)
squares on BA and AC.but, the (square) on DC is
equal to the (sum of the square) on DA and AC . foe angle
DAC is a right-angle [prop.1.47]. but , the (square)
on BC is equal to (sum of the square) on BA and AC.
foe (that) was assumed.thus, the square on DC is equal
to the square on BC. sp side DC is also equal to (side)
BC. and since DA is equal AB, and AC (is) common
,the two (straight-lines) DA,AC are equal to the two
(straight-lines) BA, AC. and the base DC is equal
to the base BC . thus , angle DAC [is] equal to angle
BAC [prop.1.8] . but DAC is a right-angle. thus, BAC
is also a right-angle.
thus, if the square on one of the sides of a straight is
equal to the (sum of the) squares on the remaining two
sides of the triangle then the angle contained by the remaining
two sides of the triangle is a right-angle.,(which is )
the very thing it was required to show.
เรื่องที่ 48ถ้ากำลังสองของด้านของรูปสามเหลี่ยมเท่ากันการ (ผลรวมของการ) สี่เหลี่ยมกับที่เหลือ ด้านข้างรูปสามเหลี่ยมแล้วมุมทั้งสองที่เหลืออยู่ ด้านของรูปสามเหลี่ยมเป็นมุม ฉากสำหรับให้สแควร์ด้าน BC สามเหลี่ยมของABC จะเท่ากับ (ผลรวมของการ) สี่เหลี่ยมที่ด้านข้างBA และ AC ผมบอกว่า มุม BAC เป็นมุม ฉากศัตรูให้ AD ได้ออกจากจุด A ที่มุมขวาบรรทัดสามเหลี่ยม AC [prop.1.11], และให้ AD ได้เท่ากับ BA [prop.1.3], และให้ DCมีการเข้าร่วม ตั้งแต่ DA เป็นเท่ากับ AB ให้การทั้งมีการเพิ่มทาง AC ดังนั้น การ (ผลรวมของตัว) สี่เหลี่ยมบน BA และ AC.but (จัตุรัส) บน DC เป็นเท่ากับ (ผลบวกของช่องสี่เหลี่ยม) ใน DA และ AC มุมศัตรู DAC จะเป็นฉาก [prop.1.47] แต่ (จัตุรัส)บน BC จะเท่ากับ (ผลบวกของช่องสี่เหลี่ยม) BA และ ACศัตรู (ที่) assumed.thus สแควร์บน DC เท่าจัตุรัสบน BC sp ด้าน DC ก็เท่ากับ (ด้านข้าง)BC และ DA เป็นเท่ากับ AB, AC (เป็น) ทั่วไปสอง (สายตรง) DA, AC จะเท่ากับสอง(สายตรง) BA, ac คือคำว่าและ DC ฐานเท่าการ BC ฐาน ดังนั้น มุม DAC [เป็น] เท่ากับมุมBAC [prop.1.8] แต่ DAC เป็นมุม ฉาก ดังนั้น BACยังเป็นมุมฉากดังนั้น ถ้าเป็นสี่เหลี่ยมจัตุรัสบนด้านตรงอย่างใดอย่างหนึ่งเท่ากับ (จำนวนตัว) สี่เหลี่ยมบนเหลือสองด้านของรูปสามเหลี่ยมแล้วมุมที่เหลืออยู่ ทั้งสองด้านของรูปสามเหลี่ยมเป็นสิทธิ-มุม,(which is)สิ่งดีก็จำเป็นต้องแสดง
การแปล กรุณารอสักครู่..
