which are the efficient estimation of geometric correction model param การแปล - which are the efficient estimation of geometric correction model param ไทย วิธีการพูด

which are the efficient estimation


which are the efficient estimation of geometric correction model parameters and
the efficient prediction of the spatial distribution of residuals. These
two purposes are balanced by minimizing the universal kriging prediction
error variance. Brus and Heuvelink (2007) showed that the
universal kriging variance incorporates both the estimation error
variance of the trend and the prediction error variance of the residual.
After minimizing the mean (or sum) of the universal kriging
variance for the entire image, one automatically obtains the right
balance between optimization of the sample pattern in geographic
and feature spaces. From Figs. 6 and 7, it was demonstrated that
the UKMS design, which considered the spatial autocovariance of
regression residuals, was efficient to estimate the parameters of
geometric correction models. Hence, UKMS performs best in both
simulation and actual-image geometric correction experiments.
As in the UKMS GCPs optimization, the quality measure of MUKV
does not depend on the data values themselves but merely on the
spatial pattern of the predictors and the covariance structure of the
residuals. This allows us to compute the MUKV before collecting
the GCPs coordinates. However, the UKMS needs the variogram of
regression residuals to calculate the covariance of samples and predictors
before samples optimization. In this paper, the variogram
was provided by the SCS geometric correction. Therefore, it needs
to collect GCPs for twice: the first time is to collect the GCPs for
SCS geometric correction which in order to obtain the regression
form and regression residual variogram; the second time is to collect
GCPs for UKMS geometric correction based on the results of
SCS. As a result, this method becomes less efficient, even though
UKMS achieves the most accurate geometric correction. Besides
this, the variogram of regression residuals always contains uncertainty,
which will propagate into UKMS optimization and affect
the GCP configuration. Hence, dealing with the situation that no
prior variogram is known or the variogram has uncertainty is a
key problem in UKMS optimization. Diggle and Ribeiro (2007) provided
a way to solve this problem through utilizing a model-based
geostatistical approach. In this approach, the residual variogram
can be modeled from expert judgment or empirical experience.
Then one treats the variogram as being uncertain and estimates its
parameters using a Bayesian approach (Diggle and Lophaven, 2006;
Diggle and Ribeiro, 2007). Therefore, this model-based geostatistical
method can be adopted in the GCPs spatial pattern optimization
when no variogram is known or variogram has uncertainty.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
which are the efficient estimation of geometric correction model parameters andthe efficient prediction of the spatial distribution of residuals. Thesetwo purposes are balanced by minimizing the universal kriging predictionerror variance. Brus and Heuvelink (2007) showed that theuniversal kriging variance incorporates both the estimation errorvariance of the trend and the prediction error variance of the residual.After minimizing the mean (or sum) of the universal krigingvariance for the entire image, one automatically obtains the rightbalance between optimization of the sample pattern in geographicand feature spaces. From Figs. 6 and 7, it was demonstrated thatthe UKMS design, which considered the spatial autocovariance ofregression residuals, was efficient to estimate the parameters ofgeometric correction models. Hence, UKMS performs best in bothsimulation and actual-image geometric correction experiments.As in the UKMS GCPs optimization, the quality measure of MUKVdoes not depend on the data values themselves but merely on thespatial pattern of the predictors and the covariance structure of theresiduals. This allows us to compute the MUKV before collectingthe GCPs coordinates. However, the UKMS needs the variogram ofregression residuals to calculate the covariance of samples and predictorsbefore samples optimization. In this paper, the variogramwas provided by the SCS geometric correction. Therefore, it needsto collect GCPs for twice: the first time is to collect the GCPs forSCS geometric correction which in order to obtain the regressionform and regression residual variogram; the second time is to collectGCPs for UKMS geometric correction based on the results ofSCS. As a result, this method becomes less efficient, even thoughUKMS achieves the most accurate geometric correction. Besidesthis, the variogram of regression residuals always contains uncertainty,which will propagate into UKMS optimization and affectthe GCP configuration. Hence, dealing with the situation that noprior variogram is known or the variogram has uncertainty is akey problem in UKMS optimization. Diggle and Ribeiro (2007) provideda way to solve this problem through utilizing a model-basedgeostatistical approach. In this approach, the residual variogramcan be modeled from expert judgment or empirical experience.Then one treats the variogram as being uncertain and estimates itsparameters using a Bayesian approach (Diggle and Lophaven, 2006;Diggle and Ribeiro, 2007). Therefore, this model-based geostatisticalmethod can be adopted in the GCPs spatial pattern optimizationwhen no variogram is known or variogram has uncertainty.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!

ที่ประมาณค่าพารามิเตอร์ของแบบจำลองที่มีประสิทธิภาพและแก้ไขรูปทรงเรขาคณิต
ทำนายประสิทธิภาพของการกระจายตัวเชิงพื้นที่ของความคลาดเคลื่อน . เหล่านี้
สองวัตถุประสงค์มีความสมดุลโดยการลดความแปรปรวนของความคลาดเคลื่อนการพยากรณ์สากลคริกกิ้ง
. บรุส และ heuvelink ( 2007 ) พบว่าความแปรปรวน
คริกกิ้งสากลประกอบด้วยทั้งการประเมินข้อผิดพลาด
ความแปรปรวนของความคลาดเคลื่อนการพยากรณ์แนวโน้มและความแปรปรวนของส่วนที่เหลือ .
หลังจากลดหมายถึง ( หรือรวม ) ความแปรปรวนของคริกกิ้ง
สากลสำหรับภาพทั้งหมดอย่างใดอย่างหนึ่งโดยอัตโนมัติได้รับสิทธิ
ความสมดุลระหว่างการเพิ่มประสิทธิภาพของตัวอย่างแบบแผนในทางภูมิศาสตร์
และมีช่องว่าง จากลูกมะเดื่อ . 6 และ 7 มัน )
ukms การออกแบบ ซึ่งถือว่า autocovariance พื้นที่
ค่าประสิทธิภาพการถดถอย , การประมาณค่าพารามิเตอร์ของ
รุ่นแก้ไขรูปทรงเรขาคณิต ดังนั้น ukms มีประสิทธิภาพดีที่สุดในการจำลองและรูปเรขาคณิตแก้ไข

เท่าที่ทดลอง ในการเพิ่มประสิทธิภาพ gcps ukms , วัดคุณภาพของ mukv
ไม่ได้ขึ้นอยู่กับข้อมูลคุณค่าตัวเอง แต่เพียงในรูปแบบเชิงพื้นที่ของปัจจัย

และทดสอบโครงสร้างของค่า .นี้ช่วยให้เราสามารถคำนวณ mukv ก่อนเก็บ
gcps พิกัด อย่างไรก็ตาม ความต้องการของ ukms variogram
ถดถอยซึ่งคำนวณความแปรปรวนของกลุ่มตัวอย่างและพยากรณ์
ก่อนตัวอย่างการเพิ่มประสิทธิภาพ ในกระดาษนี้ variogram
โดย SCS เรขาคณิตแก้ไข ดังนั้น จึงต้องการ
เก็บ gcps สองเท่า : ครั้งแรกคือ การรวบรวม gcps สำหรับ
SCS เรขาคณิตแก้ไขซึ่ง เพื่อให้ได้รูปแบบการถดถอย
และตกค้าง variogram ; ครั้งที่สองคือการรวบรวม
gcps สำหรับ ukms เรขาคณิตแก้ไขตามผล
SCS . ผล วิธีการนี้จะมีประสิทธิภาพน้อยกว่า แม้ว่า
ukms บรรลุการแก้ไขรูปทรงเรขาคณิตที่ถูกต้องที่สุด นอกจากนี้
นี้ variogram ของสมการถดถอยซึ่งมักจะมีความไม่แน่นอน
ซึ่งจะเผยแพร่ใน ukms optimization และมีผลต่อ
GCP การตั้งค่า ดังนั้น การจัดการกับสถานการณ์ที่ไม่ variogram
ก่อนเป็นที่รู้จักหรือ variogram มีความไม่แน่นอนเป็นปัญหาสำคัญในการเพิ่มประสิทธิภาพ ukms
. ดิกเกิล และ ริเบโร่ ( 2007 ) ให้
วิธีการแก้ปัญหานี้ผ่านการใช้สำหรับ
geostatistical ) ในวิธีนี้
variogram ตกค้างสามารถจำลอง จากการตัดสินของผู้เชี่ยวชาญหรือประสบการณ์เชิงประจักษ์
จากนั้นหนึ่งถือว่า variogram เป็นไม่แน่นอนและประมาณการของ
ค่าใช้วิธีการเบส์ ( ดิกเกิล และ lophaven , 2006 ;
ดิกเกิล และ ริเบโร่ , 2007 ) ดังนั้น วิธี geostatistical
นี้สำหรับสามารถนำมาใช้ในการเพิ่มประสิทธิภาพ gcps รูปแบบ
เมื่อไม่ variogram หรือเป็นที่รู้จักกัน variogram มีความไม่แน่นอน
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2025 I Love Translation. All reserved.

E-mail: