Corrected Item-Total Correlation: Figure 7 below highlights the column containing the "Corrected Item-Total Correlation" for each of the items. This column displays the correlation between a given Task Value item and the sum score of the other two items. For example, the correlation between Task Value item 1 and the sum of items 2 and 3 (i.e., item 2 + item 3) is r = .799. What this means is that there is a strong, positive correlation between the scores on the one item (item 1) and the combined score of the other two (items 2 and 3). This is a way to assess how well one item's score is internally consistent with composite scores from all other items that remain. If this correlation is weak (de Vaus suggests anything less than .30 is a weak correlation for item-analysis purposes [de Vaus (2004), Suveys in Social Research, Routledge, p. 184]), then that item should be removed and not used to form a composite score for the variable in question. For example, if the correlation between scores for item 1 and the combined scores of items 2 and 3 was low, say r = .15, then when we create the composite (overall) score for Task Value (the step taken after reliability analysis) we would create the composite using only items 2 and 3 and we would simply ignore scores from item 1 because it was not internally consistent with the other items.
Figure 7: Statistical Results for Reliability
Corrected Item-Total Correlation: Figure 7 below highlights the column containing the "Corrected Item-Total Correlation" for each of the items. This column displays the correlation between a given Task Value item and the sum score of the other two items. For example, the correlation between Task Value item 1 and the sum of items 2 and 3 (i.e., item 2 + item 3) is r = .799. What this means is that there is a strong, positive correlation between the scores on the one item (item 1) and the combined score of the other two (items 2 and 3). This is a way to assess how well one item's score is internally consistent with composite scores from all other items that remain. If this correlation is weak (de Vaus suggests anything less than .30 is a weak correlation for item-analysis purposes [de Vaus (2004), Suveys in Social Research, Routledge, p. 184]), then that item should be removed and not used to form a composite score for the variable in question. For example, if the correlation between scores for item 1 and the combined scores of items 2 and 3 was low, say r = .15, then when we create the composite (overall) score for Task Value (the step taken after reliability analysis) we would create the composite using only items 2 and 3 and we would simply ignore scores from item 1 because it was not internally consistent with the other items. Figure 7: Statistical Results for Reliability
การแปล กรุณารอสักครู่..
