3 Results and discussion  1. Effect of NaCl on antioxidant activity of การแปล - 3 Results and discussion  1. Effect of NaCl on antioxidant activity of ไทย วิธีการพูด

3 Results and discussion 1. Effect

3 Results and discussion
1. Effect of NaCl on antioxidant activity of peptides
The DPPH radical scavenging activity increased slightly as the NaCl contents increased from 0 to 4%, and then decreased slightly (Fig. 1a). The highest DPPH radical scavenging activity was 92.2% when the NaCl content was 4%, being significantly higher than 84.1% at the NaCl content of 8% (p b 0.05). However, the blank was 85.4%, which was not significantly different from that containing 8% NaCl. With regard to Fe2+-chelating ability, there was a difference between NaCl contents particularly between 0 and 8% (p b 0.05) where the loss was up to 25%. This changemight be the result fromthe disruption caused by high NaCl content on specific peptide structures and amino acid side chain groups responsible for chelating transition metal ions. Our study showed that below6% NaCl therewere no significant changes in antioxidant activity.
2. Effect of temperature on antioxidant activity of peptides
As the temperature increased from 25 to 60 °C, the DPPH radical scavenging activity increased and then showed a sharp decline between 60 °C and 80 °C (Fig. 1b). A similar trend was also observed in the Fe2+-chelating ability. As the temperature increased from 60 to 80 °C, the Fe2+-chelating ability halved as it decreased from 62.7% to 31.5%. Short chain, low molecular weight peptides do not have the tertiary and quaternary structure (only those proteins having molecular weight ≧50 kDa can form the quaternary structure) (John, 1999), but they still can form secondary structures, which are the key factors affecting the antioxidant activity. The extremely high temperature used here would affect the secondary structure, which would lead to the instability of antioxidant activity.
3. Effect of pH on antioxidant activity of peptides
The antioxidant activity of peptides from Jinhua hams under different pH values is shown in Fig. 1c. Peptides at the neutral pH exhibited the strongest DPPH radical scavenging activity, and there was no significant decrease under acidic conditions. Even when the pH was reduced to 3, it stillmaintained 90% of its DPPH radical scavenging activity. However, the DPPH radical scavenging activity of the peptides was greatly affected by the alkaline condition. When the pH was increased to 9, the DPPH radical scavenging activity sharply declined and at pH 11, the activity was reduced by 40% compared with that under neutral pH condition. The Fe2+-chelating ability showed a fluctuated trend, but was not significantly affected by pH. There are several factors that could account for the loss of antioxidant activity under alkaline condition. One reason is the occurrence of racemization. Under alkaline conditions it is likely that racemization reactions will occur, forming a mixture of L- and D-isomers and it is known that differences in biological activities existed between isomers. It is likely that racemization reaction occurs when peptide was in alkaline condition (Mathews & Vam-Holde, 2000). Another reason for the loss of activity could be the result of a deamidation reaction. Deamination is promoted at higher pH values resulting in changes with structure and conformation and loss of antioxidant activity. The third possibility is that the activation energy of peptide degradation varies with changing pH. Different pH values will affect the actual degradation pathway used (Bell & Labuza, 1991; Patel & Borchardt, 1990). Generally speaking, each peptide has its proper pH range. During this pH range, the structure is relatively stable as well as the antioxidant activity. In addition, the side chains of some small peptides can be hydrolyzed by alkaline catalyzed (Skwierczynski & Conners, 1993; Tsoubeli & Labuza, 1991). Therefore, alkaline conditions are unfavorable to maintain the antioxidant activity of peptides from Jinhua ham.
4. Effect of light on antioxidant activity of peptides
As shown in Fig. 2, DPPH radical scavenging activity and Fe2+-chelating ability decreased with the storage time increased, irrespective of whether they were exposed to light or dark. However, it can be seen that the DPPH radical scavenging activity and Fe2+-chelating ability were lower after 4 weeks, being susceptible to stronger lighting levels. Exposure to sunshine reduced DPPH radical scavenging activity and Fe2+-chelating ability of peptides by 35.7% and 39.2%, respectively. However, the antioxidant activities of peptides stored under reduced lighting conditions fell by about 20% after 4 weeks (p b 0.05). This showed that these peptides are sensitive to light intensity. Therefore, during the preparation and for storage, peptides should be protected from light.
5. Effect of pepsin–trypsin digestion on amino acid compositions of peptides
The content of free amino acids in the sample peptides prior to digestion accounted for 37.7% of the total amino acids (Table 1). A two hour digestion with pepsin did not significantly alter the free amino acid contents. However, following 2 h incubation with trypsin, the content of free amino acids increased by 3.9% compared to the control without digestion. This is a proof that the majority of the peptides were not digested by pepsin; theywere just reduced to small-sized peptides. However, in the presence of trypsin, these peptides were more completely hydrolyzed, releasing higher amounts of free amino acids. After the digestion was completed, the percentage of free amino acids of the sample accounted for 41.6% of the total amino acids. Thus more than 50% of the amino acids in final were present in the form of peptides. Clemente (2000) found that protein hydrolysates were better absorbed than whole proteins. Maebuchi et al. (2007) also showed that the peptide transport system plays a major role in the absorption of protein and peptide digestive products. Studies reported that peptides containing one or several hydrophobic amino acids like Val or Leu can increase the presence of the peptides at thewater-lipid interface and therefore facilitate access to scavenge free radicals generated at the lipid phase (Anusha, Samaranayaka, Eunice, & Li, 2011). In addition, metal-chelating amino acid residues such as Met, Glu, Gln, Lys and Arg within the sequences of these peptides contributed to the superior Fe2+-chelating ability of the antioxidant peptides as well as their high radical scavenging potential. In this research, hydrophobic amino acids, including Val and Leu and metal-chelating amino acid residues such as Met, Glu, Gln, Lys and Arg take up nearly 50% of the total amino acids. These amino acids, containing non polar groups, have a high binding capacity for the poly unsaturated fatty acids, which contribute to the antioxidant activity of the peptides (Jung, Kim, & Kim, 1995).
6. Effect of pepsin–trypsin simulated gastro-intestinal digestion on surface hydrophobicity
As shown in Fig. 3, digestion with pepsin for 2.0 h did not result in any change to the surface hydrophobicity (p ≧ 0.05). However, further digestion with trypsin significantly decreased the surface hydrophobicity (p b 0.05). Protein oxidation can lead to the exposure of hydrophobic groups, as can thermal treatment and protein degradation (Pacifici, Kono, & Davies, 1993). Slow heating can result in the stretching of polypeptide chains, thus exposing more hydrophobic groups. In our work, pepsin splits peptides into smaller fragments, thereby exposing previously internal groups to the environment. While trypsin hydrolyzed peptides into smaller chains, it also produced more free amino acids due to its greater hydrolytic activities. These amino acids have a greater affinity with water.
3.7. Effect of pepsin–trypsin simulated gastro-intestinal digestion on antioxidant activity of peptides
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
3 ผลและการสนทนา 1. ผลของ NaCl กิจกรรมต้านอนุมูลอิสระของเปปไทด์ DPPH รุนแรง scavenging กิจกรรมเพิ่มขึ้นเล็กน้อยเป็น NaCl รายเพิ่มขึ้นจาก 0 เป็น 4% และจากนั้น ลดลงเล็กน้อย (Fig. 1a) สูงสุด DPPH รุนแรง scavenging กิจกรรมได้ 92.2% เมื่อเนื้อหา NaCl 4% อย่างมีนัยสำคัญสูงกว่า 84.1% เนื้อหา NaCl 8% (p b 0.05) อย่างไรก็ตาม ว่างเปล่าเป็น 85.4% ซึ่งไม่แตกต่างอย่างมากจากที่มี 8% NaCl เกี่ยวกับ Fe2 + -chelating ความสามารถ มีความแตกต่างระหว่าง NaCl เนื้อหาโดยเฉพาะอย่างยิ่งระหว่าง 0 ถึง 8% (p b 0.05) การที่สูญเสียได้ถึง 25% Changemight นี้เป็นผลจากทีมที่เกิดจากเนื้อหา NaCl สูงโครงสร้างเฉพาะเพปไทด์และกรดอะมิโนไซด์เวย์โซ่กลุ่มชอบ chelating ประจุของโลหะทรานซิชัน การศึกษาของเราพบว่า below6% NaCl therewere ไม่เปลี่ยนแปลงที่สำคัญในกิจกรรมการต้านอนุมูลอิสระ 2. ผลของอุณหภูมิกิจกรรมต้านอนุมูลอิสระของเปปไทด์ เป็นอุณหภูมิเพิ่มขึ้นจาก 25 ถึง 60 ° C, DPPH รุนแรง scavenging กิจกรรมเพิ่มขึ้น และจากนั้น พบลดลงคมชัดระหว่าง 60 ° C และ 80 ° C (Fig. 1b) แนวโน้มที่คล้ายกันยังพบใน Fe2 + -chelating ความสามารถในการ เป็นอุณหภูมิเพิ่มขึ้นจาก 60 ถึง 80 ° C, Fe2 + -chelating ถูกแบ่งครึ่งเป็นจะลดลงจาก 62.7% ยาว 31.5% ความสามารถในการ โซ่สั้น เปปไทด์น้ำหนักโมเลกุลต่ำมีโครงสร้างระดับตติยภูมิ และ quaternary (เฉพาะโปรตีนที่มีน้ำหนักโมเลกุล ≧50 kDa สามารถแบบโครงสร้าง quaternary) (จอห์น 1999), แต่พวกเขายังคงสามารถจัดโครงสร้างรอง ซึ่งเป็นกุญแจสำคัญปัจจัยที่ส่งผลกระทบต่อกิจกรรมการต้านอนุมูลอิสระ ที่นี่ใช้อุณหภูมิสูงมากจะส่งผลต่อรองโครงสร้าง ซึ่งจะนำไปสู่ความไม่แน่นอนของกิจกรรมต้านอนุมูลอิสระ 3. ผลของกิจกรรมการต้านอนุมูลอิสระของเปปไทด์ กิจกรรมการต้านอนุมูลอิสระของเปปไทด์จากจินหัว hams ภายใต้ค่า pH ต่างกันจะแสดงอยู่ในซี Fig. 1 แข็งแกร่ง DPPH รุนแรง scavenging กิจกรรมจัดแสดงเปปไทด์ที่ pH เป็นกลาง และมีไม่ลดลงอย่างมีนัยสำคัญสภาวะกรด แม้ว่า pH ลดลงเป็น 3 มัน stillmaintained 90% ของกิจกรรม scavenging รุนแรง DPPH อย่างไรก็ตาม DPPH scavenging กิจกรรมรุนแรงของเปปไทด์ถูกมากได้ผลกระทบจากสภาพด่าง เมื่อ pH เพิ่มขึ้นถึง 9 กิจกรรม scavenging รุนแรง DPPH ปฏิเสธอย่างรวดเร็ว และที่ pH 11 กิจกรรมลดลง 40% เมื่อเทียบกับภายใต้เงื่อนไขค่า pH เป็นกลาง Fe2 + -chelating สามารถแสดงให้เห็นแนวโน้ม fluctuated แต่มีไม่มากได้รับผลกระทบ โดยค่า pH มีปัจจัยหลายอย่างที่สามารถบัญชีสำหรับขาดทุนของกิจกรรมต้านอนุมูลอิสระภายใต้สภาพด่าง เหตุผลหนึ่งคือ การเกิดขึ้นของ racemization สภาวะด่าง ก็มีแนวโน้มว่า ปฏิกิริยา racemization จะเกิดขึ้น ได้ เป็นส่วนผสมของ L - และ D-isomers และเป็นที่รู้จักกันว่า ความแตกต่างในกิจกรรมชีวภาพอยู่ระหว่าง isomers ก็มีแนวโน้มว่า ปฏิกิริยา racemization เกิดขึ้นเมื่อเพปไทด์ในสภาพด่าง (แมทิวส์และ Vam-Holde, 2000) เหตุผลอื่นสำหรับการขาดทุนของกิจกรรมอาจเป็นผลลัพธ์ของปฏิกิริยา deamidation คือการส่งเสริมการ deamination ที่ค่า pH สูงเกิดขึ้นในการเปลี่ยนแปลงโครงสร้าง conformation และสูญเสียกิจกรรมการต้านอนุมูลอิสระ ความเป็นไปได้ที่สามมีพลังงานกระตุ้นของเพปไทด์สลายตัวแตกต่างกันไป มีค่า pH ที่เปลี่ยนแปลง ค่า pH ที่แตกต่างกันจะมีผลต่อการสลายตัวจริงทางเดินใช้ (Bell & Labuza, 1991 Patel & Borchardt, 1990) พูด แต่ละเพปไทด์มีช่วงค่า pH ที่เหมาะสม ในระหว่างช่วงนี้ค่า pH โครงสร้างนั้นค่อนข้างมีเสถียรภาพและกิจกรรมการต้านอนุมูลอิสระ นอกจากนี้ ด้านสามารถ hydrolyzed โซ่เปปไทด์ขนาดเล็กบาง โดยด่างกระบวน (Skwierczynski & Conners, 1993 Tsoubeli & Labuza, 1991) ดังนั้น สภาพด่างจะร้ายรักษากิจกรรมการต้านอนุมูลอิสระของเปปไทด์จากแฮมจินหัว 4. ผลของกิจกรรมการต้านอนุมูลอิสระของเปปไทด์ ตามที่แสดงใน Fig. 2 กิจกรรม scavenging รุนแรง DPPH และ Fe2 + -chelating สามารถลดลงกับเวลาจัดเก็บเพิ่มขึ้น ไม่ว่าพวกเขาได้สัมผัสแสง หรือมืด อย่างไรก็ตาม จะเห็นที่ DPPH รุนแรง scavenging กิจกรรมและ Fe2 + -chelating สามารถถูกล่างหลังจาก 4 สัปดาห์ การไวต่อแสงระดับแข็งแกร่งได้ โดนแดดลดกิจกรรม scavenging รุนแรง DPPH และ Fe2 + -chelating ความสามารถของเปปไทด์ โดย 35.7% และ 39.2% ตามลำดับ อย่างไรก็ตาม กิจกรรมต้านอนุมูลอิสระของเปปไทด์ที่เก็บไว้ภายใต้สภาพแสงลดตกประมาณ 20% หลังจาก 4 สัปดาห์ (p b 0.05) พบว่า เปปไทด์เหล่านี้มีความไวต่อความเข้มแสง ดังนั้น ใน ระหว่างการเตรียม และ การเก็บข้อมูล เปปไทด์ควรได้รับการป้องกันจากแสง 5. ผลของเพพซิน – ทริปซินย่อยอาหารบนองค์กรดอะมิโนของเปปไทด์ เนื้อหาของกรดอะมิโนอิสระในเปปไทด์ตัวอย่างก่อนที่จะย่อยอาหารที่คิดเป็น 37.7% กรดอะมิโนทั้งหมด (ตารางที่ 1) สองชั่วโมงย่อยอาหารกับเพพซินได้ไม่เปลี่ยนกรดอะมิโนอิสระเนื้อหาอย่างมีนัยสำคัญ อย่างไรก็ตาม 2 h ฟักตัวที่ต่อกับทริปซิน เนื้อหาของกรดอะมิโนอิสระที่เพิ่มขึ้น 3.9% เมื่อเทียบกับตัวควบคุมโดยไม่มีการย่อยอาหาร นี่คือหลักฐานที่ส่วนใหญ่ของเปปไทด์ถูกต้องไม่ โดยเพพซิน theywere ลดลงเป็นเปปไทด์ขนาดเล็กเพียง อย่างไรก็ตาม ในต่อหน้าของทริปซิน เปปไทด์เหล่านี้ได้อย่างสมบูรณ์มากขึ้น hydrolyzed ปล่อยจำนวนกรดอะมิโนอิสระที่สูงกว่า หลังจากย่อยอาหารเสร็จ เปอร์เซ็นต์ของกรดอะมิโนอิสระของตัวอย่างลงบัญชี 41.6% ของกรดอะมิโนทั้งหมด มากกว่า 50% ของกรดอะมิโนในสุดท้ายจึง ถูกนำเสนอในรูปของเปปไทด์ คลีเมนเต้ (2000) พบว่า hydrolysates โปรตีนถูกดูดซึมดีกว่าโปรตีนทั้งหมด Maebuchi et al. (2007) ยังแสดงให้เห็นว่า ระบบขนส่งเพปไทด์มีบทบาทสำคัญในการดูดซึมของโปรตีนและเพปไทด์ย่อยอาหารผลิตภัณฑ์ การศึกษารายงานว่า เปปไทด์ที่ประกอบด้วยหนึ่ง หรือหลายกรดอะมิโน hydrophobic เหมือนวาลหรือลัวสามารถเพิ่มสถานะของเปปไทด์ที่ไขมัน thewater อินเทอร์เฟซ และจึง ช่วยในการเข้าถึง scavenge อนุมูลอิสระที่สร้างในขั้นตอนระดับไขมันในเลือด (Anusha, Samaranayaka, Eunice และ Li, 2011) นอกจากนี้ chelating โลหะตกค้างกรดอะมิโนเช่นเม็ท Glu, Gln, Lys และอาร์กิวเมนต์ของค่าในลำดับของเปปไทด์เหล่านี้ส่วนเหนือกว่า Fe2 + -chelating ความสามารถของเปปไทด์ต้านอนุมูลอิสระรวมทั้งศักยภาพของ scavenging รุนแรงสูง ในงาน วิจัย กรดอะมิโน hydrophobic วาลและลัว และ chelating โลหะตกค้างกรดอะมิโนเช่นเม็ท Glu, Gln, Lys และอาร์กิวเมนต์ของค่าขึ้นเกือบ 50% ของกรดอะมิโนรวม กรดอะมิโนเหล่านี้ ประกอบด้วยกลุ่มที่ไม่มีขั้ว มีความจุรวมสูงสำหรับในระดับที่สมโพลีกรดไขมันนั้น ซึ่งนำไปสู่กิจกรรมการต้านอนุมูลอิสระของเปปไทด์ (จุง คิม & คิม 1995) 6. ผลของเพพซิน – ทริปซินย่อยอาหาร gastro ลำไส้บนผิว hydrophobicity จำลอง แสดงใน Fig. 3 ย่อยอาหารกับเพพซินสำหรับ 2.0 h ผลไม่เปลี่ยนแปลงใด ๆ การ hydrophobicity ผิว (p ≧ 0.05) อย่างไรก็ตาม ต่อย่อยอาหารกับทริปซินอย่างมีนัยสำคัญลดลง hydrophobicity ผิว (p b 0.05) ออกซิเดชันโปรตีนสามารถนำไปสู่ความเสี่ยงของกลุ่ม hydrophobic สามารถระบายความร้อนรักษาและโปรตีนย่อยสลาย (Pacifici, Kono, & เด วีส์ 1993) ความร้อนช้าอาจส่งผลในการยืดของโซ่ polypeptide จึง เปิดเผย hydrophobic กลุ่มเพิ่มเติม เพพซินแยกเปปไทด์เป็นชิ้น ๆ ขนาดเล็ก จึงเปิดเผยก่อนหน้านี้ภายในกลุ่มสิ่งแวดล้อมในการทำงานของเรา ในขณะที่ทริปซิน hydrolyzed เปปไทด์เป็นโซ่ขนาดเล็ก จึงผลิตกรดอะมิโนอิสระเพิ่มมากขึ้นเนื่องจากกิจกรรมของไฮโดรไลติกมากขึ้น กรดอะมิโนเหล่านี้มีความสัมพันธ์มากกว่าน้ำ 3.7 การลักษณะพิเศษของเพพซิน – ทริปซินจำลอง gastro ลำไส้ย่อยอาหารต้านอนุมูลอิสระกิจกรรมของเปปไทด์
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
3 Results and discussion
1. Effect of NaCl on antioxidant activity of peptides
The DPPH radical scavenging activity increased slightly as the NaCl contents increased from 0 to 4%, and then decreased slightly (Fig. 1a). The highest DPPH radical scavenging activity was 92.2% when the NaCl content was 4%, being significantly higher than 84.1% at the NaCl content of 8% (p b 0.05). However, the blank was 85.4%, which was not significantly different from that containing 8% NaCl. With regard to Fe2+-chelating ability, there was a difference between NaCl contents particularly between 0 and 8% (p b 0.05) where the loss was up to 25%. This changemight be the result fromthe disruption caused by high NaCl content on specific peptide structures and amino acid side chain groups responsible for chelating transition metal ions. Our study showed that below6% NaCl therewere no significant changes in antioxidant activity.
2. Effect of temperature on antioxidant activity of peptides
As the temperature increased from 25 to 60 °C, the DPPH radical scavenging activity increased and then showed a sharp decline between 60 °C and 80 °C (Fig. 1b). A similar trend was also observed in the Fe2+-chelating ability. As the temperature increased from 60 to 80 °C, the Fe2+-chelating ability halved as it decreased from 62.7% to 31.5%. Short chain, low molecular weight peptides do not have the tertiary and quaternary structure (only those proteins having molecular weight ≧50 kDa can form the quaternary structure) (John, 1999), but they still can form secondary structures, which are the key factors affecting the antioxidant activity. The extremely high temperature used here would affect the secondary structure, which would lead to the instability of antioxidant activity.
3. Effect of pH on antioxidant activity of peptides
The antioxidant activity of peptides from Jinhua hams under different pH values is shown in Fig. 1c. Peptides at the neutral pH exhibited the strongest DPPH radical scavenging activity, and there was no significant decrease under acidic conditions. Even when the pH was reduced to 3, it stillmaintained 90% of its DPPH radical scavenging activity. However, the DPPH radical scavenging activity of the peptides was greatly affected by the alkaline condition. When the pH was increased to 9, the DPPH radical scavenging activity sharply declined and at pH 11, the activity was reduced by 40% compared with that under neutral pH condition. The Fe2+-chelating ability showed a fluctuated trend, but was not significantly affected by pH. There are several factors that could account for the loss of antioxidant activity under alkaline condition. One reason is the occurrence of racemization. Under alkaline conditions it is likely that racemization reactions will occur, forming a mixture of L- and D-isomers and it is known that differences in biological activities existed between isomers. It is likely that racemization reaction occurs when peptide was in alkaline condition (Mathews & Vam-Holde, 2000). Another reason for the loss of activity could be the result of a deamidation reaction. Deamination is promoted at higher pH values resulting in changes with structure and conformation and loss of antioxidant activity. The third possibility is that the activation energy of peptide degradation varies with changing pH. Different pH values will affect the actual degradation pathway used (Bell & Labuza, 1991; Patel & Borchardt, 1990). Generally speaking, each peptide has its proper pH range. During this pH range, the structure is relatively stable as well as the antioxidant activity. In addition, the side chains of some small peptides can be hydrolyzed by alkaline catalyzed (Skwierczynski & Conners, 1993; Tsoubeli & Labuza, 1991). Therefore, alkaline conditions are unfavorable to maintain the antioxidant activity of peptides from Jinhua ham.
4. Effect of light on antioxidant activity of peptides
As shown in Fig. 2, DPPH radical scavenging activity and Fe2+-chelating ability decreased with the storage time increased, irrespective of whether they were exposed to light or dark. However, it can be seen that the DPPH radical scavenging activity and Fe2+-chelating ability were lower after 4 weeks, being susceptible to stronger lighting levels. Exposure to sunshine reduced DPPH radical scavenging activity and Fe2+-chelating ability of peptides by 35.7% and 39.2%, respectively. However, the antioxidant activities of peptides stored under reduced lighting conditions fell by about 20% after 4 weeks (p b 0.05). This showed that these peptides are sensitive to light intensity. Therefore, during the preparation and for storage, peptides should be protected from light.
5. Effect of pepsin–trypsin digestion on amino acid compositions of peptides
The content of free amino acids in the sample peptides prior to digestion accounted for 37.7% of the total amino acids (Table 1). A two hour digestion with pepsin did not significantly alter the free amino acid contents. However, following 2 h incubation with trypsin, the content of free amino acids increased by 3.9% compared to the control without digestion. This is a proof that the majority of the peptides were not digested by pepsin; theywere just reduced to small-sized peptides. However, in the presence of trypsin, these peptides were more completely hydrolyzed, releasing higher amounts of free amino acids. After the digestion was completed, the percentage of free amino acids of the sample accounted for 41.6% of the total amino acids. Thus more than 50% of the amino acids in final were present in the form of peptides. Clemente (2000) found that protein hydrolysates were better absorbed than whole proteins. Maebuchi et al. (2007) also showed that the peptide transport system plays a major role in the absorption of protein and peptide digestive products. Studies reported that peptides containing one or several hydrophobic amino acids like Val or Leu can increase the presence of the peptides at thewater-lipid interface and therefore facilitate access to scavenge free radicals generated at the lipid phase (Anusha, Samaranayaka, Eunice, & Li, 2011). In addition, metal-chelating amino acid residues such as Met, Glu, Gln, Lys and Arg within the sequences of these peptides contributed to the superior Fe2+-chelating ability of the antioxidant peptides as well as their high radical scavenging potential. In this research, hydrophobic amino acids, including Val and Leu and metal-chelating amino acid residues such as Met, Glu, Gln, Lys and Arg take up nearly 50% of the total amino acids. These amino acids, containing non polar groups, have a high binding capacity for the poly unsaturated fatty acids, which contribute to the antioxidant activity of the peptides (Jung, Kim, & Kim, 1995).
6. Effect of pepsin–trypsin simulated gastro-intestinal digestion on surface hydrophobicity
As shown in Fig. 3, digestion with pepsin for 2.0 h did not result in any change to the surface hydrophobicity (p ≧ 0.05). However, further digestion with trypsin significantly decreased the surface hydrophobicity (p b 0.05). Protein oxidation can lead to the exposure of hydrophobic groups, as can thermal treatment and protein degradation (Pacifici, Kono, & Davies, 1993). Slow heating can result in the stretching of polypeptide chains, thus exposing more hydrophobic groups. In our work, pepsin splits peptides into smaller fragments, thereby exposing previously internal groups to the environment. While trypsin hydrolyzed peptides into smaller chains, it also produced more free amino acids due to its greater hydrolytic activities. These amino acids have a greater affinity with water.
3.7. Effect of pepsin–trypsin simulated gastro-intestinal digestion on antioxidant activity of peptides
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
3 ผลลัพธ์และการอภิปราย
1 ผลของโซเดียมคลอไรด์ต่อฤทธิ์ต้านอนุมูลอิสระของเปปไทด์
dpph เป็นตัวเร่งปฏิกิริยากิจกรรมเพิ่มขึ้นเล็กน้อยเป็นเนื้อหาที่มีเพิ่มขึ้นจาก 0 ถึง 4 % และจากนั้นลดลงเล็กน้อย ( รูปที่ 1A ) กิจกรรมที่ dpph สูงสุดเป็นตัวเร่งปฏิกิริยาอาจเมื่อปริมาณเกลือร้อยละ 4 จะสูงกว่า 84.1 % ที่เกลือปริมาณ 8% ( p B ตามลำดับ อย่างไรก็ตามว่างเป็น 85.4 % ซึ่งไม่แตกต่างจากที่ที่มีเกลือโซเดียมคลอไรด์ร้อยละ 8 . เกี่ยวกับ fe2 - และความสามารถ มีความแตกต่างระหว่างที่มีเนื้อหาโดยเฉพาะอย่างยิ่งระหว่าง 0 และ 8 % ( p B ) ) ที่ลดลงถึง 25%changemight นี้เป็นผลจากการหยุดชะงักเกิดจากปริมาณเกลือสูงบนโครงสร้างเพปไทด์ที่เฉพาะเจาะจงและโซ่ข้างรับผิดชอบและไอออนโลหะเปลี่ยนกรดอะมิโน . ผลการศึกษา พบว่า below6 โซเดียมคลอไรด์และไม่มีการเปลี่ยนแปลงในสารต้านอนุมูลอิสระ .
2 ผลของอุณหภูมิต่อฤทธิ์ต้านอนุมูลอิสระของเปปไทด์
เมื่ออุณหภูมิเพิ่มขึ้นจาก 25 ถึง 60 ° Cการ dpph เป็นตัวเร่งปฏิกิริยาเพิ่มกิจกรรมแล้วพบว่าลดลง 60 ° C และคมระหว่าง 80 ° C ( รูปที่ 1A ) แนวโน้มที่คล้ายกันยังพบใน fe2 - และความสามารถ เมื่ออุณหภูมิเพิ่มขึ้นจาก 60 ถึง 80 องศา C , และความสามารถใน fe2 - ครึ่งหนึ่งมันลดลงจากร้อยละ 62.7 31.5 % โซ่สั้นน้ำหนักโมเลกุลต่ำ เปปไทด์ และไม่มีโครงสร้างตติย Quaternary ( เฉพาะโปรตีนที่มีน้ำหนักโมเลกุล≧ 50 กิโลดาลตันสามารถสร้างโครงสร้าง quaternary ) ( จอห์น , 1999 ) แต่พวกเขายังสามารถสร้างโครงสร้างทุติยภูมิ ซึ่งเป็นปัจจัยที่สำคัญที่มีผลต่อการต้านอนุมูลอิสระ อุณหภูมิที่ใช้สูงมากที่นี่ จะส่งผลกระทบต่อโครงสร้างทุติยภูมิซึ่งจะนำไปสู่การขาดเสถียรภาพของสารต้านอนุมูลอิสระ .
3 ผลของ pH ต่อฤทธิ์ต้านอนุมูลอิสระของเปปไทด์
สารต้านอนุมูลอิสระของเปปไทด์จากค่า pH ที่แตกต่างกันภายใต้ Jinhua แฮมจะเป็นภาพที่ 1c เปปไทด์ที่ pH เป็นกลาง มี dpph แข็งแกร่งเป็นตัวเร่งปฏิกิริยา กิจกรรม และไม่มีความสัมพันธ์ลดลงภายใต้สภาวะที่เป็นกรดแม้เมื่อ pH ลดลง 3 , stillmaintained 90% ของ dpph เป็นตัวเร่งปฏิกิริยาในกิจกรรม อย่างไรก็ตาม dpph เป็นตัวเร่งปฏิกิริยากิจกรรมของเปปไทด์ถูกผลกระทบจากสภาพเป็นด่าง เมื่อพีเอชเพิ่มขึ้นเป็น 9 , dpph เป็นตัวเร่งปฏิกิริยากิจกรรมลดลงอย่างรวดเร็วและ pH 11 กิจกรรมลดลง 40% เมื่อเทียบกับ Ph เป็นกลาง ภายใต้เงื่อนไข
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: