occupation of free volume cavities by molecules,
and folding of polymer chains that hinder mobility, normally lead to a decrease in free volumes. However, such generalizations hold good when Ps formation and decay process itself has not been significantly affected by positron quenchers and inhibitors that may result, as products, after the imposed treatments on the poly- mer. More caution is to be exercised when interpreting the changes in the positron parameter I3, as it is dependent on a number of other factors as well, such as molecular rearrangement and pres- ence of free-radicals (or Ps inhibitors). Therefore, its changes are normally understood in conjunction with the free volume size change. On the other hand, the fractional free volume inspects the overall modification in the microstructure. The results of this study are analyzed in this prospect.
3.1.1. Effect of UV radiation on virgin hair Fig. 1a shows the variation of o-Ps lifetime and hence the free volume size as a function of UV exposure time, while Fig. 1b and c depict the variation of o-Ps intensity and fractional free volume respectively. The o-Ps lifetime s3 (and hence Vf) alternately in- crease and decrease until 300 h of UV irradiation time and, then, show a decreasing trend. The fractional free volume (Fv) varies more or less in a similar manner. Human hair (average diameter 70 lm) has a layered structure with its inner mass – cortex (90% of dry weight) being sur- rounded by a 5–10 lm thick cuticle consisting of overlapping scales of flattened keratinized cells. The cells in cortex and cuticle are cemented together by the cell membrane complex (CMC). Obviously, the cuticle receives UV light directly, and in the absence of melanin granules in it, the protein component is attacked by the incident light. This makes the fiber hygroscopic. The initial increase in the value of s3 (for UV exposure time