หน้า11
up with the correct answer. Simply putting the arithmetic in an application context made the skill easier.
But if applications can be easier than skills, why do students perform so much better on the skills? The answer is simple. We spend large amounts of time teaching arithmetic paper and pencil skills, but we spend relatively little time teaching students how to apply them. For example, the skill of long division is taught for many months, if all the time that is spent at 4th, 5th, 6th, 7th, and 8th grade on it is totaled. But only days are spent applying that division. We are led to believe application is more difficult than skill because we spend so little time on application.
How does Bloom's Taxonomy fit in to this? The taxonomy is more appropriate within uses, within properties, within skills — than it is across them. Specifically, the understanding of application ranges from the trivial that can be memorized (knowledge) to the knowledge of generalizations (comprehension) to the transfer of what is known from one context to another (application) to the invention of new mathematical models (analysis synthesis, and evaluation). For example, here is a question about applications at the knowledge level: If two independent events have probabilities 2/3 and 4/5 , what is the probability they will both happen? Here is one at the level of comprehension: Examine whether two events are independent, given certain probabilities of occurrence. And here is one at the level of evaluation: Develop an experiment to determine whether these events are independent.
Understanding through Representations
The trend of increasing complexity in the view of what constitutes the understanding of mathematics has a counterpart in the increasing complexity given the structure of the mathematics curriculum, and in particular. My example here comes directly from the reports of the National Council of Teachers of Mathematics in the United States. In 1980, the NCTM distributed a small report entitled An Agenda for Action in which it recommended that all mathematics be organized around problem solving. The writers of An Agenda for Action had dichotomized mathematics into two aspects — skills and problem solving.— and chosen problem solving to counter a back-to-basics movement. Nine years later, in the 1989 NCTM Curriculum and Evaluation Standards, mathematics was viewed as having four process aspects: problem solving, reasoning, communication, and connections. Most recently, in the 2000 Principles and Standards for School Mathematics, a fifth process aspect was added: representations. This validated the fourth aspect of understanding of mathematics that we had made central in our work on UCSMP.
To many psychologists and what seems today to be an increasing number of educators, skills, properties, and uses all miss the real understanding of mathematics. These people believe that children do not really understand mathematics unless they can represent the concept in some way. For some, that way must be with concrete objects; for others, a pictoral representation will do. You may be aware of the theory cf Bruner, that for each concept, the child goes through concrete, iconic (representational), and formal stages of understanding. Piaget felt that these stages are more or less independent of the concept but due to a more general maturation.
หน้า11ขึ้นกับคำตอบที่ถูกต้อง เพียงใส่หมายเลขคณิตในบริบทของโปรแกรมประยุกต์การทำทักษะได้ง่ายขึ้น แต่ถ้าใช้งานได้ง่ายกว่าทักษะ ทำไมนักศึกษาทำมากในทักษะ คำตอบคือง่าย เราใช้เวลาสอนคณิตศาสตร์กระดาษและดินสอทักษะจำนวนมาก แต่เราค่อนข้างใช้เวลาน้อยที่สอนนักเรียนในการนำไปใช้ ตัวอย่าง ทักษะการหารยาวเป็นสอนหลายเดือน ถ้าตลอดเวลาที่ใช้ใน 4, 5, 6, 7 และ 8 ชั้นการถูกหาผลรวม แต่ใช้วันเดียวใช้ส่วนที่ เราจะนำไปสู่เชื่อสมัครยากมากกว่าเนื่องจากเราใช้เวลาน้อยมากในแอพลิเคชัน วิธีไม่จำแนกประเภทของบานพอดีในนี้ การจำแนกประเภทเป็นที่เหมาะสมภายในใช้ ในคุณสมบัติ ภายในทักษะ — ที่ข้ามไป โดยเฉพาะ ความเข้าใจของแอพลิเคชันมีตั้งแต่แบบเล็กน้อยที่ภาพ (ความรู้) ความรู้ของ generalizations (ความเข้าใจ) กับการโอนของสิ่งที่เรียกว่าจากบริบทหนึ่ง (ใช้) การประดิษฐ์แบบจำลองทางคณิตศาสตร์ใหม่ (วิเคราะห์สังเคราะห์ และการประเมินผล) ตัวอย่าง นี่คือคำถามเกี่ยวกับโปรแกรมประยุกต์ระดับความรู้: กิจกรรมอิสระสองมีกิจกรรม 2/3 และ 4/5 คืออะไรน่าจะทั้งสองเกิดขึ้น ที่นี่เป็นหนึ่งในระดับของความเข้าใจ: ตรวจสอบว่าเหตุการณ์ทั้งสองเป็นอิสระ ให้กิจกรรมบางอย่างของเหตุการณ์ และนี่คือหนึ่งในระดับการประเมิน: การทดลองเพื่อตรวจสอบว่า เหตุการณ์เหล่านี้ไม่ขึ้นอยู่กับพัฒนา ความเข้าใจผ่านการนำเสนอแนวโน้มของการเพิ่มความซับซ้อนในมุมมองของสิ่งที่ก่อความเข้าใจของคณิตศาสตร์มีสำเนาการกำหนดโครงสร้างของหลักสูตรคณิตศาสตร์ซับซ้อนเพิ่มขึ้น และโดยเฉพาะอย่างยิ่ง ตัวอย่างของฉันนี่มาจากรายงานของชาติสภาของครูของคณิตศาสตร์ในสหรัฐอเมริกา ในปี 1980, NCTM การกระจายรายงานขนาดเล็กได้รับวาระอันสำหรับการดำเนินการที่จะแนะนำว่า คณิตศาสตร์ทั้งหมดจัดรอบการแก้ปัญหา เขียนวาระอันสำหรับการดำเนินการมี dichotomized คณิตศาสตร์เข้าสองด้าน – ทักษะและแก้ปัญหา — และเลือกแก้ปัญหาเพื่อการเคลื่อนไหวหลังพื้นฐาน เก้าปีต่อมา ในปี 1989 NCTM หลักสูตรและมาตรฐานการประเมินผล คณิตศาสตร์ถูกดูว่ามีกระบวนการ 4 ด้าน: การแก้ปัญหา เหตุผล สื่อสาร และการเชื่อมต่อ ล่าสุด หลัก 2000 และมาตรฐานโรงเรียนคณิตศาสตร์ ด้านกระบวนการห้าเพิ่ม: แทน ด้านที่สี่ความเข้าใจของคณิตศาสตร์ที่เราได้ทำศูนย์กลางในการทำงานของเราใน UCSMP ตรวจสอบ To many psychologists and what seems today to be an increasing number of educators, skills, properties, and uses all miss the real understanding of mathematics. These people believe that children do not really understand mathematics unless they can represent the concept in some way. For some, that way must be with concrete objects; for others, a pictoral representation will do. You may be aware of the theory cf Bruner, that for each concept, the child goes through concrete, iconic (representational), and formal stages of understanding. Piaget felt that these stages are more or less independent of the concept but due to a more general maturation.
การแปล กรุณารอสักครู่..
