The most common peak wavelengths are 780 nm, 850 nm, 1310 nm, 1550 nm, and 1625 nm. The 850 nm region, referred to as the first window, was used initially because of the support for the original LED and detector technology. Today, the 1310 nm region is popular because of the dramatically lower loss and lower dispersion.
You can also use the 1550 nm region, which can avoid the need for repeaters. Generally, performance and cost increase as wavelength increases.
Multimode and single-mode fibers use different fiber types or sizes. For example, single-mode fiber uses 9/125 um and multimode uses 62.5/125 or 50/125. The different size fibers have different optical loss dB/km values. Fiber loss depends heavily on the operating wavelength. Practical fibers have the lowest loss at 1550 nm and the highest loss at 780 nm with all physical fiber sizes (for example, 9/125 or 62.5/125).
The most common peak wavelengths are 780 nm, 850 nm, 1310 nm, 1550 nm, and 1625 nm. The 850 nm region, referred to as the first window, was used initially because of the support for the original LED and detector technology. Today, the 1310 nm region is popular because of the dramatically lower loss and lower dispersion.You can also use the 1550 nm region, which can avoid the need for repeaters. Generally, performance and cost increase as wavelength increases.Multimode and single-mode fibers use different fiber types or sizes. For example, single-mode fiber uses 9/125 um and multimode uses 62.5/125 or 50/125. The different size fibers have different optical loss dB/km values. Fiber loss depends heavily on the operating wavelength. Practical fibers have the lowest loss at 1550 nm and the highest loss at 780 nm with all physical fiber sizes (for example, 9/125 or 62.5/125).
การแปล กรุณารอสักครู่..
