As discussed above, even though polyphenols share the common phenolic feature, due to the structural diversity, these phytochemicals vary significantly in their physicochemical properties. Owing to the chemical complexity and the frequent occurrence of polyphenols in plants, extraction, separation, identification and analysis of polyphenols remain as challenging as ever, despite the recent advances in new instrumentation. The challenge is multiplied when the complex glycosylation and polymerization patterns and the various food matrices are considered. While it is nearly impossible to develop a protocol for all polyphenols, there are some general approaches to these important aspects of polyphenol research. Many good reviews and books are available on this subject, so only a brief summary will be covered here [32-35].
Before polyphenols are extracted, samples containing these compounds must be collected, reserved and prepared properly. It is generally understood that samples (e.g., plants, foods, biological fluids) collected must represent the actual pool. Care must be taken to minimize the loss of compounds of interest during transportation and preservation of the samples. To avoid degradation of native polyphenols, samples are often dried, frozen or lyophilized before extraction because high moisture or water content aids enzyme activities [33] (Figure 10). Heating and exposure to light and oxygen may affect the polyphenolic composition in many cases; therefore high-temperature drying should be avoided as much as possible. Antioxidants such as butylated hydroxytoluene (BHT) and ascorbic acid are often added to samples to avoid oxidation of the polyphenols. Sample pre-treatment may be done by filtration and centrifugation as well [33] (Figure 10).
Many different extraction methods are available for different types of samples [32-34]. For the majority of plant originated food samples, solvent extractions such as liquid/liquid partitioning and solid/liquid extraction are most frequently employed in the laboratory. The phenolic nature of polyphenols makes them relatively hydrophilic, thus free polyphenols, including aglycones, glycosides, and oligomers, are extracted using water, polar organic solvents such as methanol, ethanol, acetonitrile and acetone, or their mixture of water. The liquid extracts are sometimes partitioned with solvents such as ethyl acetate, depending on the solubility of the target polyphenols. Also important is the pH of the extraction solvent. For polyphenols, most extractions are carried out under acidic conditions because they are generally more stable in low pH, and the acidic condition helps polyphenols to stay neutral, thus readily extracted into organic solvents. This is done using weak acid or low concentrations of a strong acid. High acid concentration can cause hydrolysis of glycosides or acylglycosides and thus may give different pictures of native polyphenol profiles. On the other hand, not all polyphenols exist in the free form. Phenolic acids such as ferulic acid and lignans in grains are often bound to structural materials. Hydrolysis using acid or alkaline releases these phenolics which
Nutrients 2010, 2
1240
are partitioned into ethyl acetate or n-butanol [8-10]. Sometimes, intentional hydrolysis is carried out
to obtain aglycones with enzymes such as -glucosidase, or with strong acid such as 2–4 M HCl at
elevated temperature such as refluxing. This is necessary, particularly when the glycosylation patterns
are extremely complex, and when standard reference materials of polyphenol glycosides are
unavailable. The hydrolysis can simplify the chromatographic profile during separation, and aid
quantification and structural identification of the polyphenols.
ตามที่กล่าวไว้ข้างต้น ถึงแม้ว่าโพลีฟีนอลใช้คุณลักษณะทั่วไป เนื่องจากความหลากหลายของโครงสร้าง phytochemicals เหล่านี้แตกต่างกันอย่างมากในการเปรียบเทียบคุณสมบัติ เนื่องจากสารเคมีที่ซับซ้อนและบ่อยครั้งที่เกิดขึ้นของโพลีฟีนในพืช , การสกัด การแยก จำแนก และการวิเคราะห์ของโพลีฟีนยังคงเป็นความท้าทายที่เคยแม้จะมีความก้าวหน้าล่าสุดในเครื่องมือใหม่ ความท้าทายมากขึ้นเมื่อ glycosylation ซับซ้อนและรูปแบบพอลิเมอร์เมทริกซ์และอาหารต่าง ๆเป็นสำคัญ ขณะที่มันเป็นไปไม่ได้เกือบที่จะพัฒนาโปรโตคอลทั้งหมด โพลีฟีนอล มีบางทั่วไปวิธีการเหล่านี้สำคัญด้านงานวิจัยระหว่าง .รีวิวที่ดีมาก และหนังสือที่มีอยู่ในเรื่องนี้ ดังนั้นเพียงสรุปสั้น ๆ จะครอบคลุมที่นี่ [ 32-35 ] .
ก่อนจะแยกสารประกอบโพลีฟีนอล ตัวอย่างเหล่านี้จะถูกรวบรวมไว้และเตรียมอย่างถูกต้อง มันเป็นที่เข้าใจกันโดยทั่วไปว่า ตัวอย่าง เช่น , พืช , อาหาร , ของเหลวชีวภาพ ) เก็บต้องเป็นตัวแทนสระว่ายน้ำที่เกิดขึ้นจริงการดูแลจะต้องถ่ายเพื่อลดการสูญเสียของสารที่น่าสนใจระหว่างการขนส่งและเก็บรักษาตัวอย่าง เพื่อหลีกเลี่ยงการสลายตัวของฟีนอลพื้นเมืองตัวอย่างมักจะแห้งแช่แข็งหรือแห้งก่อน เพราะความชื้นสูงหรือน้ำสกัดเนื้อหากิจกรรมเอนไซม์เอดส์ [ 33 ] ( รูปที่ 10 )ความร้อนและการเปิดรับแสง และออกซิเจน อาจมีผลต่อองค์ประกอบฟีนอล ในหลายกรณี ดังนั้น การอบแห้งอุณหภูมิสูงควรหลีกเลี่ยงให้มากที่สุด สารต้านอนุมูลอิสระเช่นจักรภพ ( บาท ) และกรดแอสคอร์บิกมักจะเพิ่มตัวอย่างเพื่อหลีกเลี่ยงการออกซิเดชันของฟีนอล . ตัวอย่างก่อนอาจจะทำโดยการกรองและปั่นเช่นกัน [ 33 ]
( รูปที่ 10 )การสกัดด้วยวิธีที่แตกต่างกันมากมีอยู่ในประเภทที่แตกต่างกันของตัวอย่าง [ 32-34 ) สำหรับส่วนใหญ่ของพืชต้นกำเนิดตัวอย่างอาหาร การสกัดตัวทำละลาย เช่น ของเหลว ของเหลว และของแข็ง / ของเหลว / พาร์ทิชันแยกใหญ่มักใช้ในห้องปฏิบัติการ ธรรมชาติสารโพลีฟีนอลจะทำให้พวกเขาค่อนข้างน้ำจึงฟรี โพลีฟีนอล รวมถึง aglycones glycosides ,และ หน่วยจะสกัดโดยใช้น้ำ ตัวทำละลายอินทรีย์ที่มีขั้ว เช่น เมทานอล เอทานอล และไนอะซีโทน หรือมีส่วนผสมของน้ำ สารสกัดของเหลวด้วยตัวทำละลาย เช่น บางครั้งแยกเอทิลอะซีเตท ขึ้นอยู่กับความสามารถในการละลายของชิ้นงานโพลี . นอกจากนี้ที่สำคัญคือ pH ของตัวทำละลายในการสกัด สำหรับโพลีฟีนทีมส่วนใหญ่จะดำเนินการภายใต้สภาวะที่เป็นกรด เพราะพวกเขามักจะมีเสถียรภาพมากขึ้นในค่า pH ต่ำ และสภาวะที่เป็นกรด ช่วยให้การอยู่เป็นกลาง ดังนั้น พร้อมสกัดในตัวทำละลายอินทรีย์ นี้จะกระทำโดยใช้กรดอ่อนหรือความเข้มข้นต่ำของกรดความเข้มข้นของกรดสูงสามารถทำให้เกิดการย่อยสลายของไกลโคไซด์ หรือ acylglycosides จึงอาจให้ภาพที่แตกต่างของรูปแบบโพลีฟีนอล พื้นเมือง บนมืออื่น ๆ , โพลีฟีนทั้งหมดที่มีอยู่ในรูปแบบฟรี กรดฟีนอล เช่น กรด ferulic และลิกแนนในธัญพืช มักจะผูกพันกับวัสดุโครงสร้าง การใช้ กรด หรือ ด่าง รุ่นเหล่านี้ผลที่
2
นี่สารอาหารจำกัดจะแบ่งเป็นเอทิลอะซิเตท หรือ n-butanol [ 8-10 ] บางครั้ง การตั้งใจการ
ขอรับ aglycones ด้วยเอนไซม์ เช่น ในหรือแข็งแรงกรดเช่น 2 – 4 M HCl ที่
อุณหภูมิสูง เช่น กรด . นี้เป็นสิ่งจำเป็นโดยเฉพาะอย่างยิ่งเมื่อรูปแบบ glycosylation
มีความซับซ้อนมาก และเมื่อวัสดุมาตรฐานอ้างอิงของไกลโคไซด์เป็น
โพลีฟีนอลใช้งานไม่ได้ เอนไซม์สามารถลดความซับซ้อนของข้อมูล และช่วงแยก และปริมาณความช่วยเหลือ
และตัวโครงสร้างของโพลีฟีน .
การแปล กรุณารอสักครู่..
