a field is a set F that is a commutative group with respect to two compatible operations, addition and multiplication (the latter excluding zero), with "compatible" being formalized by distributivity, and the caveat that the additive and the multiplicative identities are distinct (0 ≠ 1).
The most common way to formalize this is by defining a field as a set together with two operations, usually called addition and multiplication, and denoted by + and ·, respectively, such that the following axioms hold (note that subtraction and division are defined in terms of the inverse operations of addition and multiplication)