In chemical engineering, biochemical engineering and protein purification, crossflow filtration[1] (also known as tangential flow filtration[2]) is a type of filtration (a particular unit operation). Crossflow filtration is different from dead-end filtration in which the feed is passed through a membrane or bed, the solids being trapped in the filter and the filtrate being released at the other end. Cross-flow filtration gets its name because the majority of the feed flow travels tangentially across the surface of the filter, rather than into the filter.[1] The principal advantage of this is that the filter cake (which can blind the filter) is substantially washed away during the filtration process, increasing the length of time that a filter unit can be operational. It can be a continuous process, unlike batch-wise dead-end filtration.
Diagram of cross-flow filtration
This type of filtration is typically selected for feeds containing a high proportion of small particle size solids (where the permeate is of most value) because solid material can quickly block (blind) the filter surface with dead-end filtration. Industrial examples of this include the extraction of soluble antibiotics from fermentation liquors.
In chemical engineering, biochemical engineering and protein purification, crossflow filtration[1] (also known as tangential flow filtration[2]) is a type of filtration (a particular unit operation). Crossflow filtration is different from dead-end filtration in which the feed is passed through a membrane or bed, the solids being trapped in the filter and the filtrate being released at the other end. Cross-flow filtration gets its name because the majority of the feed flow travels tangentially across the surface of the filter, rather than into the filter.[1] The principal advantage of this is that the filter cake (which can blind the filter) is substantially washed away during the filtration process, increasing the length of time that a filter unit can be operational. It can be a continuous process, unlike batch-wise dead-end filtration.
Diagram of cross-flow filtration
This type of filtration is typically selected for feeds containing a high proportion of small particle size solids (where the permeate is of most value) because solid material can quickly block (blind) the filter surface with dead-end filtration. Industrial examples of this include the extraction of soluble antibiotics from fermentation liquors.
การแปล กรุณารอสักครู่..
