Scientists now know that salty water flowing downhill is behind the RSL, but where does the water come from? There are a few possibilities, but researchers have yet to narrow it down. The water could form by the melting of surface or subsurface ice, but the likelihood of near-surface ice around the equatorial region is slim. Another possibility is the seasonal discharge of a local aquifer, but also unlikely. Since the salts have the potential to absorb moisture from the atmosphere through a process known as deliquescence, that could be another possibility.
Here on Earth, in the Atacama Desert, we know that the deliquescence of certain salts offers the only known refuge for active microbial communities. If RSL form as a result of deliquescence of perchlorate salts, they could have major astrobiological implications.
The findings have been published in Nature Geosciences and provide new insight into the current Martian hydrologic cycle.
Scientists now know that salty water flowing downhill is behind the RSL, but where does the water come from? There are a few possibilities, but researchers have yet to narrow it down. The water could form by the melting of surface or subsurface ice, but the likelihood of near-surface ice around the equatorial region is slim. Another possibility is the seasonal discharge of a local aquifer, but also unlikely. Since the salts have the potential to absorb moisture from the atmosphere through a process known as deliquescence, that could be another possibility.Here on Earth, in the Atacama Desert, we know that the deliquescence of certain salts offers the only known refuge for active microbial communities. If RSL form as a result of deliquescence of perchlorate salts, they could have major astrobiological implications.The findings have been published in Nature Geosciences and provide new insight into the current Martian hydrologic cycle.
การแปล กรุณารอสักครู่..
