Abstract
In this study, the effect of a new pulsating blankholder system has been investigated on improving the formability of aluminum 1050 alloy. By using this system, during each pulsating cycle, first, the metal was easily flowed into the die through removing the blankholder force, and then the blankholder force applied by springs was employed to prevent excessive metal flow and wrinkling. Deep drawing of cylindrical cup was simulated by ABAQUS6.7 software. Cup depth, tearing, and thickness distribution of the experimental and numerical analyses were then compared. The results indicated that by using the pulsating blankholder system coupled with proper frequency and gap, the cup depth can be increased and thickness distribution can be improved. Further, good agreement was observed between simulation and experimental results.