Mathematical model for path finding
P. polycephalum is a large, single-celled amoeboid organism that
can form a dynamic tubular network linking the discovered food
sources during foraging. And the physiological mechanism behind
the tube formation and selection contributes to the Physarum’s ability
of path finding, which is: tubes thicken in a given direction
when the flux through it persists in that direction for a certain
time. With this mechanism, a mathematical model for path
finding has been constructed to simulate the adaptive dynamics
of tubular network. A brief introduction for the model is given
below.
Assume the shape of Physarum is represented by a graph, in
which a plasmodial tube refers to an edge of the graph and a junction
between tubes refers to a node. Two special nodes acting as
food sources are labelled as N1 and N2 in the graph, while other
nodes are labelled as N3, N4, N5, . . .. And the edge between node
i and j is labelled as Mij. The variable Qij denotes the flux through
With the mechanism between the flux and tube thickness
(described as the conductivity ofthe tube),the adaptation equation
for conductivity is constructed as follows:
d
dt
Dij = f(|Qij|) − ˛Dij (3)
It is obvious that positive feedback exists in the model, as f(Q) is
a increasing function with f(0) = 0.
3. Rapid Physarum Algorithm
With experiments of path finding process of the mathematical
model described in Section 2, it is observed that although the
shortest paths can be automatically selected as others disappear,
much time and calculation is required to derive the final solution.
However, in some SP applications, it is required that shortest
paths need to be quickly identified either because an immediate
response isneededor because the shortestpathsneedto be recalculated
repeatedly. For this reason, a number of heuristic approaches
have been advocated for decreasing the computation time. In this
section, with the integration of one heuristic rule extracted from
experiments, a Rapid Physarum Algorithm (RPA) is proposed to
improve the efficiency of the original mathematical model.
3.1. Extraction of the heuristic rule
With observation of path finding process of the model in fully
connected graphs, some phenomena have been found. After several
iterations, the flux through each tube shows regularity in variation,
which means that the flux through some tubes keeps increasing as
the tubes thicken, while other keeps decreasing as the tubes thinner
untiltheflux converge to 0 and the tubes disappear. However, when
the flux through the tube decreases to a very small value. Normally,
when the flux is lower than a small value , a lot of iterations are
still needed until the tube vanishes. ’s value varies from network
to network, which is determined by the properties of the network,
including its structure,the edge length, etc. According to our observation,
when is in the range [0, 0.1] in most of the networks, we
can change the flux associated with corresponding edges to 0. As
we can see in Fig. 1, almost 2/3 of the iterations are used for paths
to adjust its flux to decrease from a small value to zero.
If some heuristic rules can be integrated to reduce the iteration
process by cutting those tubes which will potentially vanish, the
efficiency of the path finding process can be improved with less
computation complexity. Therefore, after a detailed study into our
simulation of the model and results, an empirical heuristic rule is
adopted from those phenomena and integrated into the model.
Rule: If the variation of the flux through the tube maintains a stable
decreasing trend, then the tube will be cut.
This heuristic rule means that if a “stable decreasing trend” is
determined through variation process of the flux which may imply
the flux will continue decrease until it reaches 0, the tube will not
be part of shortest path and is deleted directly with its flux assigned
0. The “stable decreasing trend” criterion is met if Qvij, the times for
which the flux has continuously decreased/increased, satisfies the
following condition:
S(Qvij, Qij) = Qvij + C1 + R1(Qij) + R2(n) (4)
where positive value of Qvij means the flux has continuously
increased for Qvij time while negative value means continuously
decreasing times. And R1(Qij) denotes the influence of current flux
Qij on S. If Qij is very small, the tube is more likely to vanish and
small |Qvij| is needed to identify “stable decreasing trend”. In contrast,
if Qij is very large, more iterations are needed in case of wrong
decision on cutting tubes. What is more, considering that the scale
of the SP problem can also affect the decision criterion, R2(n) is
แบบจำลองทางคณิตศาสตร์สำหรับการหาเส้นทางหน้า polycephalum เป็นขนาดใหญ่เดียว celled สิ่งมีชีวิตที่คล้ายหรือเกี่ยวกับอะมีบาสามารถสร้างแบบไดนามิกที่มีเครือข่ายเชื่อมโยงค้นพบอาหารแหล่งข้อมูลในการหาอาหาร . และสรีรวิทยากลไกเบื้องหลังการสร้างและการเลือกหลอดที่มีความสามารถของ physarumของเส้นทางการค้นหา ซึ่งเป็นท่อข้นในทิศทางที่กำหนดเมื่อไหลผ่านมันยังคงอยู่ในทิศทางที่แน่นอนเวลา ด้วยกลไกนี้แบบจำลองทางคณิตศาสตร์สำหรับเส้นทางค้นหาได้ถูกสร้างขึ้นเพื่อจำลองแบบพลศาสตร์ท่อเครือข่าย สั้นเบื้องต้นเพื่อให้รุ่นด้านล่างถือว่ารูปร่างของ physarum จะแสดงเป็นกราฟในซึ่งเป็นหลอด plasmodial หมายถึงขอบของกราฟ และชุมทางระหว่างท่อ หมายถึง โหนด สองโหนด ทำหน้าที่พิเศษแหล่งอาหารถูก labelled เป็น N1 และ N2 ในกราฟ , ในขณะที่อื่น ๆโหนดถูก labelled เป็น N3 N4 5 , , , , , , , , . . . . . . . . และขอบระหว่างโหนดฉัน และ เจ จะมองว่าเป็นก็ได้ ตัวแปร หมายถึง qij ไหลผ่านกับกลไกระหว่างฟลักซ์และท่อหนา( อธิบายเป็นแบบจำลองของท่อ ) , การปรับตัว สมการสำหรับการนำขึ้นดังนี้Dแฟรชdij = F ( | qij | ) −˛ dij ( 3 )มันเป็นที่ชัดเจนว่าข้อเสนอแนะในเชิงบวกที่มีอยู่ในรูปแบบเป็น F ( q )มีการเพิ่มฟังก์ชั่น f ( 0 ) = 03 . physarum ขั้นตอนวิธีการอย่างรวดเร็วกับการทดลองของเส้นทางการค้นหาของกระบวนการทางคณิตศาสตร์แบบจำลองที่อธิบายไว้ในส่วนที่ 2 พบว่า แม้ว่าเส้นทางที่สั้นที่สุดที่สามารถเลือกโดยอัตโนมัติขณะที่คนอื่น ๆหายไปเวลามากและการคำนวณจะต้องได้รับ ทางออกสุดท้ายอย่างไรก็ตาม ในบางโปรแกรม SP , มันเป็นสิ่งสำคัญที่สั้นที่สุดเส้นทางที่ต้องระบุเพราะทันทีอย่างรวดเร็วการตอบสนอง isneededor เพราะ shortestpathsneedto จะคำนวณซ้ำ ๆ สำหรับเหตุผลนี้ หลายวิธีฮิวริสติกได้รับการสนับสนุนเพื่อลดเวลาในการประมวลผล ในนี้ส่วนโดยรวมของหนึ่งกฎนี้สกัดจากการทดลอง , วิธี physarum อย่างรวดเร็ว ( RPA ) เสนอการเพิ่มประสิทธิภาพของแบบจำลองทางคณิตศาสตร์ดั้งเดิม3.1 . การสกัดกฎฮิวริสติกกับการสังเกตของเส้นทางการค้นหากระบวนการของรูปแบบ ครบการเชื่อมต่อกราฟบางปรากฏการณ์ได้พบ . หลังจากที่หลาย ๆการทำซ้ำ , ไหลผ่านแต่ละหลอดแสดงความสม่ำเสมอในความผันแปรซึ่งหมายความว่าค่าผ่านท่อเพิ่มขึ้น เช่นท่อหนาในขณะที่อื่น ๆยังคงลดลงเป็นหลอดเรียวuntiltheflux บรรจบ 0 และหลอดหายไป อย่างไรก็ตาม เมื่อไหลผ่านท่อลดลงค่าขนาดเล็กมาก โดยปกติเมื่อไหลจะต่ำกว่าค่าขนาดเล็กมากของการทำซ้ำคือยังต้องการจนกว่าหลอดจะหายไป " s ค่าแตกต่างจากเครือข่ายเครือข่าย ซึ่งจะพิจารณาจากคุณสมบัติของเครือข่ายรวมทั้งโครงสร้างของขอบความยาว ฯลฯ ตามแบบของเราเมื่ออยู่ในช่วง [ 0 , 0.1 ] ในส่วนของเครือข่ายเราสามารถเปลี่ยนกระแสความเกี่ยวข้องกับตรงขอบเป็น 0 เป็นเราสามารถดูในรูปที่ 1 เกือบ 2 / 3 ของรอบ จะใช้เส้นทางเพื่อปรับการไหลลดลงจากค่าขนาดเล็กศูนย์ถ้ากฎนี้บางส่วนสามารถบูรณาการเพื่อลดการทำซ้ำกระบวนการโดยการตัดท่อเหล่านั้นซึ่งอาจจะหายไปได้ประสิทธิภาพของเส้นทางการค้นหากระบวนการที่สามารถปรับปรุงได้ ด้วยน้อยการคำนวณที่ซับซ้อน ดังนั้น หลังจากที่ศึกษารายละเอียดในของเราการจำลองผลของแบบจำลองและกฎการแก้ปัญหาเชิงประจักษ์คือบุญธรรมจากปรากฏการณ์ดังกล่าวและรวมอยู่ในรุ่นกฎ : หากการเปลี่ยนแปลงของค่าผ่านท่อรักษาเสถียรภาพแนวโน้มลดลง จากนั้นท่อจะถูกตัดกฎนี้หมายความว่าถ้าคงที่ " แนวโน้มลดลง "กำหนดโดยผ่านกระบวนการการเปลี่ยนแปลงฟลักซ์ซึ่งอาจบ่งบอกฟลักซ์จะยังคงลดลง จนไปถึง 0 , หลอดจะไม่เป็นส่วนหนึ่งของเส้นทางที่สั้นที่สุดและถูกลบโดยตรงด้วยการมอบหมาย0 นอกจากนี้ แนวโน้มลดลง " เกณฑ์จะพบว่า qvij , เวลาซึ่งการได้ลดลงอย่างต่อเนื่อง / เพิ่มตรงเงื่อนไขต่อไปนี้ :( qvij qij , ) = qvij + C1 + R1 + R2 ( qij ) ( n ) ( 1 )ที่ค่าบวกของ qvij หมายถึงการมีอย่างต่อเนื่องเพิ่มเวลา qvij ในขณะที่ค่าลบหมายความว่า อย่างต่อเนื่องลดครั้ง แล้ว R1 ( qij ) แสดงถึงอิทธิพลของฟลักซ์ในปัจจุบันqij S . ถ้า qij มีขนาดเล็กมาก หลอดก็น่าจะหาย และ| qvij ขนาดเล็ก | จำเป็นต้องระบุ " คงที่ลดลงแต่อย่างใด " ในทางตรงกันข้ามถ้า qij ขนาดใหญ่มาก ซ้ำเพิ่มเติมเป็นกรณีผิดปกติการตัดสินใจในการตัดท่อ สิ่งที่เพิ่มเติมคือ พิจารณาว่า ขนาดของ SP ปัญหายังสามารถส่งผลกระทบต่อการตัดสินใจเกณฑ์ อาร์ทู ( N )
การแปล กรุณารอสักครู่..