. Introduction
As it is well known different physical processes contribute to
rubber friction. Dry friction of rubbers is controlled, among others,
by adhesion, macro hysteresis, micro- or surface roughness generated
hysteresis, and cohesion (friction contribution from rubber
wear) [1,2]. In presence of lubricant, the viscous component of
friction also appears and can be interpreted as energy loss due to
the viscous nature of lubricant. Contribution of different components
to sliding friction depends on the macro geometry, detailed
surface micro-topography, relative tangential velocity, cleanliness
of surfaces, temperature, material and surface properties of rubbing
bodies, applied normal load, filler material and content,
lubricant and its additives, and surface treatment/coating of the
harder counterpart or the rubber surface. Interaction of friction
mechanisms and complexity of physical processes involved in
rubber friction, however, make the friction prediction very
challenging.
From engineering point of view reciprocating rubber seals are
of primary importance because they are frequently used machine
elements. During operation most of them slide on (apparently)
smooth hard (compared to rubber) countersurface in presence of
lubricant. Seals have smooth surface but the surface of harder
counterpart is usually even smoother (see [3]) in order to reduce
friction, rubber wear and wear induced leakage. It is well known
that reciprocating rubber seals operate frequently in boundary and
mixed lubrication regime. However different explanations exist in
the literature for the friction contribution arisen in the boundary
lubrication regime. On the one hand [4] states that the friction is
determined predominantly by interaction between the solids and
between the solids and the liquid. Bulk flow properties of the
liquid play little or no part in friction. In other words, the friction
contribution arisen in the boundary lubrication regime is considered
to be due to the shearing of a thin boundary lubricant layer
separating contacting surfaces or shearing of the interface
between the boundary layer and the solid surfaces. Shear strength
of the boundary lubricant layer is influenced by both properties of
the contacting surfaces and those of the lubricant. Its magnitude
can only be determined by experiments conducted at sufficiently
low sliding velocity where the hydrodynamic effect is negligible.
In [5], it was also pointed out that the applied normal pressure and
the adhesion may induce solid/solid contact between the adhered
boundary lubricant islands (discontinuous boundary lubricant
layer) causing relatively high coefficient of friction. In the boundary
lubrication regime, applied normal load is carried by asperity
contacts and closed lubricant pools formed in the roughness valleys
of harder surface. On the other hand, in [6,7], the importance
of micro-hysteretic friction component is emphasized in case of
boundary lubrication. The authors hypothesized that the friction
contribution arisen in boundary lubrication regime is mainly due
to the surface roughness generated hysteresis (micro-hysteresis).
The reason why this was hypothesized is that the very thin
boundary layer formed typically from few layers of lubricant
molecules makes solid type asperity contacts possible. In contrast,
Smith’s theory (see [1]) states that if the adhesion propensity is
very low (this is the case when adhesion eliminating boundary
layer separates contacting surfaces) the micro-hysteretic friction
Contents lists available at ScienceDirect
journal homepage: www.elsevier.com/locate/triboint
Tribology International
http://dx.doi.org/10.1016/j.triboint.2015.09.018
0301-679X/& 2015 Published by Elsevier Ltd.
E-mail address: goda.tibor@gt3.bme.hu
Tribology International 93 (2016) 142–150
will disappear. Consequently Smith’s theory is based on “adhesion-related
surface deformation hysteresis” where the decreasing
adhesion propensity results in decreasing micro-hysteretic friction.
Additionally Smith assumes that the micro-hysteretic friction
contribution is practically independent of the nominal contact
pressure.
Main objective of the current study is to investigate the contribution
of micro-hysteresis to rubber friction in case of apparently
smooth surfaces. In order to attain this objective it is needed
to reanalyze measurement results of [6], and compare them
additional test results. Like in [6], friction test results reported for
nitrile butadiene rubber (NBR) are in the focus of this work
because, contrary to its great practical importance, surprisingly
little attention is paid in the literature to oil lubricated sliding
friction of NBR squeezing against (apparently) smooth steel
. แนะนำก็รู้จัก กระบวนการทางกายภาพที่แตกต่างกันมีส่วนร่วมเสียดทานยาง แรงเสียดทานแห้งของยางควบคุม อื่น ๆการยึดเกาะ สัมผัสแม ไมโคร - สร้างความสัมผัส และทำงานร่วมกัน (ส่วนแรงเสียดทานจากยางสึกหรอ) [1, 2] ในน้ำมันหล่อลื่น คอมโพเนนต์ความหนืดของแรงเสียดทานยังปรากฏอยู่ และสามารถตีความเป็นการสูญเสียพลังงานจากการลักษณะความหนืดของน้ำมันหล่อลื่น ส่วนประกอบที่แตกต่างกันการเลื่อนแรงเสียดทานขึ้นอยู่กับเรขาคณิตแมโคร รายละเอียดพื้นผิว ภูมิประเทศไมโคร tangential เร็วสัมพัทธ์ ความสะอาดพื้นผิว อุณหภูมิ วัสดุ และคุณสมบัติของพื้นผิวของถูร่างกาย ใช้การโหลดปกติ วัสดุบรรจุ และ เนื้อหาน้ำมันหล่อลื่น และสารเติมแต่ง และบำบัดผิวเคลือบผิวของการคู่ยากหรือพื้นยาง ของแรงเสียดทานกลไกและความซับซ้อนของกระบวนการทางกายภาพที่เกี่ยวข้องในโดยทั่วไปยางแรงเสียดทาน อย่างไรก็ตาม ทำให้คาดเดาแรงเสียดทานมากสิ่งที่น่าท้าทายวิศวกรรมมองลูกยาง ซีลอยู่ความสำคัญมาก เพราะพวกเขามักใช้เครื่ององค์ประกอบ ในระหว่างการดำเนินการ ของภาพนิ่ง (ชัด)เรียบยาก (เทียบกับยาง) countersurface ในน้ำมันหล่อลื่น แมวน้ำมีผิวเรียบแต่พื้นผิวของยากคู่จะได้ราบรื่นขึ้น (ดู [3]) เพื่อลดแรงเสียดทาน ยางสึกหรอ และรั่วไหลเกิดการสึกหรอ เป็นที่รู้จักว่า ซีลยางแบบใช้งานบ่อยในขอบเขต และระบอบการปกครองแบบผสมน้ำมันหล่อลื่น อย่างไรก็ตาม คำอธิบายต่าง ๆ ที่มีอยู่ในวรรณกรรมที่ผลงานแรงเสียดทานที่เกิดขึ้นในขอบเขตระบอบการปกครองการหล่อลื่น ในหนึ่งมืออเมริกา [4] ที่เสียดทานถือตามโต้ตอบระหว่างของของแข็ง และของของแข็งและของเหลว จำนวนมากคุณสมบัติขั้นตอนของการของเหลวเล่นส่วนน้อย หรือไม่มีแรงเสียดทาน ในคำอื่น ๆ แรงเสียดทานถือว่าเป็นผลงานที่เกิดขึ้นในระบบหล่อลื่นขอบเขตการปกครองจะเป็น เพราะตัดของชั้นน้ำมันบาง ๆ ขอบเขตติดต่อพื้นแยก หรือตัดของอินเทอร์เฟซระหว่างชั้นขอบเขตและพื้นผิวแข็ง แรงเฉือนของขอบ ชั้นหล่อลื่นได้รับอิทธิพลจากคุณสมบัติทั้งสองของพื้นผิวติดต่อและน้ำมัน ขนาดของมันสามารถกำหนดได้ โดยทดลองที่เพียงพอความเร็วเลื่อนต่ำผลเกิด hydrodynamic อยู่เล็กน้อยใน [5], ก็ยังชี้ว่า ความดันปกติที่ใช้ และการยึดเกาะอาจก่อให้เกิดของแข็ง/แข็งติดต่อระหว่างการเครดิตขอบเขตเกาะน้ำมันหล่อลื่น (น้ำมันหล่อลื่นขอบไม่ต่อเนื่องชั้น) ทำให้ค่อนข้างสูงสัมประสิทธิ์ของแรงเสียดทาน ในขอบเขตระบอบการหล่อลื่น ใช้โหลดปกติจะดำเนินการ โดย asperityติดต่อและปิดสระน้ำมันหล่อลื่นที่เกิดขึ้นในหุบเขาที่ขรุขระของพื้นผิวที่ยากขึ้น บนมืออื่น ๆ ใน [6, 7], ความสำคัญof micro-hysteretic friction component is emphasized in case ofboundary lubrication. The authors hypothesized that the frictioncontribution arisen in boundary lubrication regime is mainly dueto the surface roughness generated hysteresis (micro-hysteresis).The reason why this was hypothesized is that the very thinboundary layer formed typically from few layers of lubricantmolecules makes solid type asperity contacts possible. In contrast,Smith’s theory (see [1]) states that if the adhesion propensity isvery low (this is the case when adhesion eliminating boundarylayer separates contacting surfaces) the micro-hysteretic frictionContents lists available at ScienceDirectjournal homepage: www.elsevier.com/locate/tribointTribology Internationalhttp://dx.doi.org/10.1016/j.triboint.2015.09.0180301-679X/& 2015 Published by Elsevier Ltd.E-mail address: goda.tibor@gt3.bme.huTribology International 93 (2016) 142–150will disappear. Consequently Smith’s theory is based on “adhesion-relatedsurface deformation hysteresis” where the decreasingadhesion propensity results in decreasing micro-hysteretic friction.Additionally Smith assumes that the micro-hysteretic frictioncontribution is practically independent of the nominal contactpressure.Main objective of the current study is to investigate the contributionof micro-hysteresis to rubber friction in case of apparentlysmooth surfaces. In order to attain this objective it is neededto reanalyze measurement results of [6], and compare themadditional test results. Like in [6], friction test results reported fornitrile butadiene rubber (NBR) are in the focus of this workbecause, contrary to its great practical importance, surprisinglylittle attention is paid in the literature to oil lubricated slidingfriction of NBR squeezing against (apparently) smooth steel
การแปล กรุณารอสักครู่..
