Our results showthat pond depth is a significant predictor of FZT infection
in juvenile fish and that this association is likely due to the effect
of water depth on snail population density. The associations although
significant are, however, weak and it is obvious that many other factors
could play a role in determining level of infections in fish and density of
host snails. Only few studies have looked atmicro-distribution of snails
within ponds. In the Red River delta, Boerlage et al. [21] were able to
find snails in all sections of ponds, but they did not estimate densities.
Hung et al. [22] observed that density of thiarid and viviparid snails decreased
with distance (and depth) from the pond edge, i.e. density of
thiarid snails at 50–100 cm, 100–150 cm and 150–200 cm from the
shore was 0.81, 0.63 and 0.51, respectively, of that in the section
0–50 cm from the edge. Our sampling focused on the sloping sides of
the ponds and this may have biased snail density. We cannot rule out
the possibility that snail distribution pattern differs between shallow
and deep ponds. This requires further investigation. Variation in snail
density among ponds may be related to the area of location and various
on-farm practices related to pond management.
The observation that density of intermediate host snails was positively
related to prevalence and intensity of infection FZT in fish support
similar observations made by Clausen et al. [10] in nursery ponds in the
Red River Delta of Northern Vietnam. In the current study, FZT infected
snailswere recovered in only nine ponds, reflecting a low prevalence of
FZT infection in host snails (i.e. 0.85%). This suggests that infected snails
may not be detected unless sampling effort is greatly increased over the
level we used. It should be noted that infection prevalence of FZT in
snails is generally low although not invariably so [15].
Although no intermediate host snails were detected in 26 of the 60
ponds, only 4 of these 26 ponds were also negative for FZT infection in
fish. This could indicate that our sampling effortwas not intense enough
to detect host snails or that ponds are contaminated with FZT cercariae
from surrounding habitats where host snails also are abundant [11,
pers. obs.]. Infections among snails in these surrounding water bodies
in some areas are likely because of the presence of domestic animal reservoir
hosts,mainly dogs, cats and pigs, and fish eating birds, play an important
role in the transmission cycle of FZT in Vietnam[23,24]. Clausen
et al. [10] also observed that in ponds with high FZT prevalence in fish,
snails could be absent, again suggesting an external source of cercariae,
probably from surrounding water bodies that were connected to the
ponds, e.g. sources of water for pond filling. In grow-out ponds daily
water replacement varies from a few percent in low exchange systems
up to 20% or more in high water-exchange systems [25]. The possibility
exists that cercariae enter these nursery ponds with replacementwater
from canals but the extent to which this happens remains to be
investigated.
The effect of high juvenile fish stocking density on FZT transmission
may be due to it's direct negative impact on intermediate host snails, i.e.
either predation or damage due to interference caused by fish probing
various objects in the water in searching for food. Giant gourami is not
a molluscivore, but is omnivorous and feeds on both plants and animals,
including aquatic plants, fish, frogs, zoobenthos (insect larvae, crustaceans
annelids) and sometimes even dead animals (Fishbase, www.
fishbase.org). Especially juvenile snailsmight be sensitive to such interference
or in the case of Bithynia spp., giant gourami inadvertently
might consume eggs attached to vegetation. However, other factors
can be important, e.g. although the number of cercariae-fish contacts
might increase with stocking density, cercariae could be diluted over
more fish. This might be important if cercariae production within the
pond is a limiting factor for infection in fish.
Although all the fish ponds studied were relatively shallow (0.4–
1.3 m), there may be direct effects of water depth on snail populations,
e.g. temperature fluctuations may be less in deeper ponds because of
the larger volume ofwater.Water temperature also influence transmission
of FZT by affecting parasite intra-snail development rate and
survival of emerged cercariae, although it is uncertain whether temperature
conditions vary sufficiently between ponds within these depth
ranges to affect cercariae survival in ponds. Finally, another factor that
may play a role in regulating snail populations is the association between
water quality and pond volume. Nhan et al. [26] showed that a
substantial amount of the organic material added as fish food in growout
ponds, accumulates in the sediment, and depending on water exchange,
various physico-chemical water quality parameters are affected,
e.g. oxygen content and subsequent algal growth. This may be
slightly different for nursery ponds as the standing crop of fish is relatively
low at least initially in the nursing cycle. Studies on feed utilization
and accumulation in sediments and how this affects water quality
and subsequent snail populations in nursery ponds are thus required.
Because of the positive correlation between snail density and FZT infection
in juvenile fish,management steps that can reduce introduction
and growth of snails need greater attention in FZT prevention and control
programs in aquaculture. The nursing cycle of juvenile fish is relatively
short (2–3 months) and nursery ponds are usually emptied
completely of water before the next nursing cycle is started. Prior to
stocking,mud can be removed from the pond bottom, and if done thoroughly
this can be an effective way of reducing snail density (unpublished
data). It may, however, not be feasible to implement this before
each nursing cycle. Alternatively, letting the pond dry out for some
time before starting the next cycle could further reduce the residual
snail population, as observed by Thien [11], who reported that drying
Table 3
Final multi-variable models testing predictors of intensity (count ratio) and prevalence
(odds ratio) of FZT infection in juvenile fish.
Factor Intensity (CR) Prevalence (OR)
Stocking density (no. m−3)
b100 (n = 23) 1.00 1.00
100–200 (n = 24) 0.77 (0.52–1.16) 0.81 (0.62–1.07)
N200 (n = 13) 0.48 (0.27–0.85)* 0.54 (0.36–0.82)**
Snail hosts (no. m−2)
0 (n = 26) 1.00 1.00
1–20 (n = 16) 1.32 (0.84–2.07) 1.34 (0.98–1.84)
N20 (n = 18) 1.87 (1.19–2.95)** 1.70 (1.24–2.34)**
*) p b 0.05; **) p b 0.01.
P.C. Thien et al. / Parasitology International 64 (2015) 522–526 525
the nursing pond bottomfor more than 2 days significantly reduced the
risk of infection with FZT in giant gourami juvenile during the wet season.
However, the period of drying pondswas not a significant predictor
of snail density in this study. Liming of ponds, primarily done to control
potential pathogenic micro-organisms and to improve pond conditions,
also has little effect on snail populations; lime only has molluscicidal effect
if applied as hydrated lime. In our study area farmers usually use
limestone (CaCO3) applied in emptied ponds. Hydrated lime is used to
control snails in catfish ponds in the US [27,28], i.e. the lime is sprayed
along the pond bankswhere the target pulmonate snails are found in association
with the littoral aquatic vegetation [27]. However, hydrated
lime is toxic to fish, and therefore use of hydrated lime is not an option
in giant gourami nursery ponds because the intermediate hosts are not
restricted to the margin of the ponds. On-farmpondmanagement practices
including filtration of inlet water to prevent snail introduction to
ponds, various methods of snail control and measures to prevent FZT
egg contamination of the pond and to prevent reservoir hosts, especially
dogs and cats from becoming infected with FZT are required to control
the transmission of FZT [29]. Although cost benefits are important to
farmers for voluntary adoption of such advice is important, the public
health impact must also be part of the calculation for government
regulations.
We conclude that pond depth is an important factor in FZT transmission
because it is associated with promoting snail population density.
Whether it is depth per se that promotes snail density or whether
pond depth is associated with some aquaculture practices that promote
snail population needs to be studied in further detail. The importance of
cercariae entering ponds from surrounding habitats needs to be
assessed in relation to source of water for replenishment (canal or
ground water). Hence it is premature to provide specific guidelines to
farmers concerning pond depth. Furthermore, additional studies
would be required to assess whether the same relationship exists in
other systems as well (other fish species and grow-out ponds). In
pond preparation, therefore, emphasis should be placed on pond preparationmethods
to minimize snail population density prior to the stocking
of fry but also on habitats surrounding ponds as transmission may
occur through immigration of cercariae produced outside ponds.
Experimental studies on optimum stocking density of fish fry are
recommended.