The principle of integral photography, which uses a two-dimensional (X-Y) array of many small lenses to capture a 3-D scene, was introduced by Gabriel Lippmann in 1908.[9][10] Integral photography is capable of creating window-like autostereoscopic displays that reproduce objects and scenes life-size, with full parallax and perspective shift and even the depth cue of accommodation, but the full realization of this potential requires a very large number of very small high-quality optical systems and very high bandwidth. Only relatively crude photographic and video implementations have yet been produced.
One-dimensional arrays of cylindrical lenses were patented by Walter Hess in 1912.[11] By replacing the line and space pairs in a simple parallax barrier with tiny cylindrical lenses, Hess avoided the light loss that dimmed images viewed by transmitted light and that made prints on paper unacceptably dark.[12] An additional benefit is that the position of the observer is less restricted, as the substitution of lenses is geometrically equivalent to narrowing the spaces in a line-and-space barrier.
Philips solved a significant problem with electronic displays in the mid-1990s by slanting the cylindrical lenses with respect to the underlying pixel grid.[13] Based on this idea, Philips produced its WOWvx line until 2009, running up to 2160p (a resolution of 3840×2160 pixels) with 46 viewing angles.[14] Lenny Lipton's company, StereoGraphics, produced displays based on the same idea, citing a much earlier patent for the slanted lenticulars. Magnetic3d and Zero Creative have also been involved.[15] The hardware overlay for iPhone and iPod touch named 3DeeSlide also adopts this technology to convert the standard screen into an auto 3D display.
The principle of integral photography, which uses a two-dimensional (X-Y) array of many small lenses to capture a 3-D scene, was introduced by Gabriel Lippmann in 1908.[9][10] Integral photography is capable of creating window-like autostereoscopic displays that reproduce objects and scenes life-size, with full parallax and perspective shift and even the depth cue of accommodation, but the full realization of this potential requires a very large number of very small high-quality optical systems and very high bandwidth. Only relatively crude photographic and video implementations have yet been produced.One-dimensional arrays of cylindrical lenses were patented by Walter Hess in 1912.[11] By replacing the line and space pairs in a simple parallax barrier with tiny cylindrical lenses, Hess avoided the light loss that dimmed images viewed by transmitted light and that made prints on paper unacceptably dark.[12] An additional benefit is that the position of the observer is less restricted, as the substitution of lenses is geometrically equivalent to narrowing the spaces in a line-and-space barrier.Philips solved a significant problem with electronic displays in the mid-1990s by slanting the cylindrical lenses with respect to the underlying pixel grid.[13] Based on this idea, Philips produced its WOWvx line until 2009, running up to 2160p (a resolution of 3840×2160 pixels) with 46 viewing angles.[14] Lenny Lipton's company, StereoGraphics, produced displays based on the same idea, citing a much earlier patent for the slanted lenticulars. Magnetic3d and Zero Creative have also been involved.[15] The hardware overlay for iPhone and iPod touch named 3DeeSlide also adopts this technology to convert the standard screen into an auto 3D display.
การแปล กรุณารอสักครู่..
