An emulsion is a macroscopic dispersion of two liquids, one of which forms the continuous part of the system (Friberg, 1976). Proteins as emulsifiers form a thick film (skin) around the surface of emulsified droplets. Such a film is usually of anisotropic character and its viscoelastic properties mainly determine the extent of emulsion stability against coalescence. The emulsion stability of food systems is, in general, a function of oil volume fraction, oil type, temperature, pH, type and amount of emulsifier(s), and the presence of counter ions and legends (e.g. salts, sugars, and carbohydrates).
Lobo and Wasan (1989) examined the stability of soybean oil/water emulsions, stabilized by a protein and a nonionic emulsifier, along with the interfacial rheological properties and dynamic thin film behavior. The protein was found to cause a large increase in the interfacial viscosity that inhibits film drainage and, hence, stabilizes the emulsions. On the other hand, emulsions containing the nonionic emulsifier, which does not affect the interfacial viscosity appreciably, were also found to be stable. Draining thin films formed from such a nonionic micellar solution was found to exhibit sharp thickness transitions, which is indicative of the stratification phenomenon. With such observations, they proposed a mechanism of emulsion stability, that is, due to the presence of long-range structural forces in thin films over the distance of the order of 1000 Å and the formation of colloid crystal-like structures within the film.
Das and Kinsella (1990) studied the adsorption behavior of heat-treated β-lactoglobulin at the oil/water emulsion interface and the coalescence stability of the emulsion droplets. They found that heating of β-lactoglobulin increased its surface hydrophobicity probably due to uncoiling. The film strength increased with decreased stability of the compact structure of β-lactoglobulin. Adsorbed proteins, in the multilayer film, were loosely bound and showed no significant contribution to coalescence stability. Surface hydrophobicity and film strength showed strong correlation with coalescence stability. The results indicated that conformational instability of β-lactoglobulin was more important than film thickness in controlling droplet coalescence.
Kiosseoglou and Mourlidis (1991) examined the influence of minor surface-active lipids occurring in virgin olive oil. They found that such lipids enhance the interfacial area per milliliter of oil created during the emulsification by bovine serum albumin (BSA). These components adsorb at the newly formed oil/water interface, bring about a marked decrease in the interfacial tension value and aid, together with adsorbed protein molecules, in the formation and stabilization of emulsion oil droplets.
Lee, McCarthy, and Dungan (1998) examined emulsion droplet formation and destabilization of both Tween 20- and β-lactoglobulin-stabilized emulsions, using Nuclear Magnetic Resonance (NMR) technique. The effect of surfactant type, surfactant concentration, pH, and ionic strength on droplet sizes of a 40-wt% octane/water emulsion was studied. They found that addition of the low-molecular-weight Tween 20 forms finer emulsion droplets than does addition of the protein, and that the Tween 20 emulsion is sensitive to surfactant concentration below a threshold ‘saturation’ concentration, unlike the case of protein-stabilized emulsion.
It has been observed in our laboratory that conductivity curves obtained for egg white-stabilized oil/water emulsions followed neither Langmuir nor Fruendlich behavior, which are usually observed when using the conductivity method for determining emulsion stability (Kato et al., 1985 and Suttiprasit et al., 1993). This paper develops a new and more general model to fit such new observed behavior. Accordingly, a new definition for emulsion stability is proposed. It is worth mentioning here that the words emulsifying activity or emulsion stability used in this text refer to emulsifying ability and short-term stability against coalescence, respectively.
เป็นอิมัลชันคือการกระจายหน้าสองทัพ ซึ่งหนึ่งในรูปแบบส่วนอย่างต่อเนื่องของระบบ ( friberg , 1976 ) โปรตีนเป็นอิมัลซิไฟเออร์แบบฟิล์มหนา ( ผิว ) ผิวที่มีอนุภาค เช่น ฟิล์ม เป็นปกติของตัวละครและทิศทางของมันได้ คุณสมบัติหลักกำหนดขอบเขตเสถียรภาพอิมัลชันกับการรวมตัวการเพิ่มเสถียรภาพของระบบอาหาร ทั่วไป การทำงานของน้ำมัน ปริมาณน้ำมันชนิด อุณหภูมิ ความเป็นกรดด่าง ชนิดและปริมาณของอิมัลซิไฟเออร์ ( S ) และการปรากฏตัวของอิออน เคาน์เตอร์ และตำนาน เช่น เกลือ น้ำตาล และคาร์โบไฮเดรต ) .
โลโบ วสันต์ ( 1989 ) และตรวจสอบความมั่นคงของ น้ำมัน / น้ำถั่วเหลืองอิมัลชันที่ปรับปรุงคุณภาพด้วยโปรตีนและอิมัลซิไฟเออร์ชนิด ,พร้อมกับระหว่างการคุณสมบัติและพฤติกรรมของฟิล์มบางแบบไดนามิก โปรตีนพบว่าสาเหตุการเพิ่มขนาดใหญ่ในภาคภาพยนตร์และความหนืดที่ยับยั้งการระบายน้ำ ดังนั้น เสถียรภาพอิมัลชัน . บนมืออื่น ๆ , อิมัลชันที่มีประจุเป็นอิมัลซิไฟเออร์ ซึ่งไม่มีผลต่อความหนืดของพอลิเมอร์ที่ได้ถูกพบเป็นมั่นคงระบายฟิล์มบางรูปแบบจากเช่นไมเซลแบบโซลูชั่นพบว่ามีการเปลี่ยนความหนาคมซึ่งเป็นข้อบ่งชี้ของการปรากฏการณ์ กับข้อสังเกตดังกล่าว พวกเขาได้เสนอกลไกของอิมัลชันคงตัว นั่นคือเนื่องจากการแสดงตนของระยะยาวโครงสร้างกองกำลังในฟิล์มบางกว่าระยะห่างของ 1000 •และการก่อตัวของคอลลอยด์คริสตัลเช่นโครงสร้างภายในฟิล์ม
วันหลังปลูกและคินเซลลา ( 1990 ) ได้ศึกษาพฤติกรรมการดูดซับความร้อนบีตา - แลคโตกลอบูลินที่น้ำมัน / น้ำอินเตอร์เฟซอิมัลชันและการรวมตัวความเสถียรของอิมัลชันหยด .พวกเขาพบว่า ความร้อนของบีตา - แลคโตกลอบูลิน เพิ่มขึ้นของพื้นผิวบรรจุภัณฑ์อาจเนื่องจากสมรรถภาพการวิจัยปฏิบัติการในชั้นเรียน . ภาพยนตร์เรื่องความแข็งแรงเพิ่มขึ้นกับลดลงเสถียรภาพของโครงสร้างขนาดเล็กของบีตา - แลคโตกลอบูลิน . การดูดซับโปรตีนในฟิล์มหลายชั้น , อยู่หลวมๆ มัดและอย่างไม่มีนัยสำคัญทางสถิติส่วนความมั่นคงในการรวมตัวพื้นผิวบรรจุภัณฑ์ฟิล์มกำลังมีความสัมพันธ์ที่แข็งแกร่งกับเสถียรภาพการรวมตัว ผลการศึกษาพบว่า โครงสร้างธุรกิจของบีตา - แลคโตกลอบูลินนั้นสำคัญกว่าความหนาของฟิล์มในการควบคุมการรวมตัวหยด
kiosseoglou mourlidis ( 1991 ) และศึกษาอิทธิพลของพื้นผิวที่ใช้งานน้อย ไขมันที่เกิดขึ้นในน้ำมันมะกอกบริสุทธิ์พวกเขาพบว่า ไขมัน ( เช่นเพิ่มพื้นที่ต่อมิลลิลิตรของน้ำมันที่สร้างขึ้นในช่วงโปรโมชั่นโดยอัลบูมิน ( BSA ) ส่วนประกอบเหล่านี้ดูดซับที่จัดตั้งขึ้นใหม่น้ำมัน / น้ำอินเตอร์เฟซ , นำเกี่ยวกับเครื่องหมายการลดลงในค่าระหว่างความตึงเครียดและช่วยเหลือพร้อมกับดูดซับโมเลกุลของโปรตีนในการสร้างและรักษาเสถียรภาพของอิมัลชันน้ำมันหยด
ลีMcCarthy และดังเกิ้น ( 1998 ) ตรวจสอบการสร้างและ destabilization อิมัลชั่นหยดทั้ง Tween 20 - บีตา - แลคโตกลอบูลินเสถียรภาพอิมัลชันโดยใช้แม่เหล็กนิวเคลียร์ ( NMR ) เทคนิค ผลของสารลดแรงตึงผิวประเภทสารลดแรงตึงผิวความเข้มข้น pH และความแรงของไอออนในตัว ขนาด 40 เปอร์เซ็นต์โดยน้ำหนักในน้ำอิมัลชันที่ศึกษาพวกเขาพบว่านอกจากของ low-molecular-weight Tween 20 รูปแบบปลีกย่อยอิมัลชั่นหยดกว่าไม่นอกจากนี้ของโปรตีน และว่า Tween 20 ชนิดมีความไวต่อความเข้มข้นของสารลดแรงตึงผิวที่ใช้ต่ำกว่าเกณฑ์ ' อิ่มตัว ' สมาธิ ซึ่งแตกต่างจากกรณีของโปรตีนเสถียรภาพอิมัลชัน .
มันได้รับการตรวจสอบในห้องปฏิบัติการของเราที่นำโค้งส่วนไข่ขาวผสมน้ำมัน / น้ำอิมัลชันตามทั้งทองแดงและพฤติกรรม fruendlich ซึ่งมักจะพบว่าเมื่อใช้วิธีหาค่าเสถียรภาพอิมัลชัน ( คาโต้ et al . , 1985 และ suttiprasit et al . , 1993 ) งานวิจัยนี้ได้พัฒนารูปแบบใหม่และทั่วไปเพื่อให้พอดีกับขนาดใหม่ สังเกตพฤติกรรมตามนิยามใหม่สำหรับเสถียรภาพอิมัลชันคือเสนอ เป็นมูลค่าการกล่าวขวัญว่าคำ 3.0 หรือเสถียรภาพอิมัลชันกิจกรรมที่ใช้ในข้อความนี้อ้างถึง emulsifying ความสามารถและเสถียรภาพระยะสั้นกับการรวมตัว ตามลำดับ
การแปล กรุณารอสักครู่..
