In materials science, creep (sometimes called cold flow) is the tendency of a solid material to move slowly or deform permanently under the influence of mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods, and generally increases as they near their melting point.
The rate of deformation is a function of the material properties, exposure time, exposure temperature and the applied structural load. Depending on the magnitude of the applied stress and its duration, the deformation may become so large that a component can no longer perform its function — for example creep of a turbine blade will cause the blade to contact the casing, resulting in the failure of the blade. Creep is usually of concern to engineers and metallurgists when evaluating components that operate under high stresses or high temperatures. Creep is a deformation mechanism that may or may not constitute a failure mode. For example, moderate creep in concrete is sometimes welcomed because it relieves tensile stresses that might otherwise lead to cracking.
Unlike brittle fracture, creep deformation does not occur suddenly upon the application of stress. Instead, strain accumulates as a result of long-term stress. Therefore, creep is a "time-dependent" deformation.
The temperature range in which creep deformation may occur differs in various materials. For example, tungsten requires a temperature in the thousands of degrees before creep deformation can occur, while ice will creep at temperatures near 0 °C (32 °F).[1] As a general guideline, the effects of creep deformation generally become noticeable at approximately 30% of the melting point (as measured on a thermodynamic temperature scale such as Kelvin or Rankine) for metals, and at 40–50% of melting point for ceramics.[citation needed] Virtually any material will creep upon approaching its melting temperature. Since the creep minimum temperature is related to the melting point, creep can be seen at relatively low temperatures for some materials. Plastics and low-melting-temperature metals, including many solders, can begin to creep at room temperature, as can be seen markedly in old lead hot-water pipes. Glacier flow is an example of creep processes in ice.
In materials science, creep (sometimes called cold flow) is the tendency of a solid material to move slowly or deform permanently under the influence of mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods, and generally increases as they near their melting point.The rate of deformation is a function of the material properties, exposure time, exposure temperature and the applied structural load. Depending on the magnitude of the applied stress and its duration, the deformation may become so large that a component can no longer perform its function — for example creep of a turbine blade will cause the blade to contact the casing, resulting in the failure of the blade. Creep is usually of concern to engineers and metallurgists when evaluating components that operate under high stresses or high temperatures. Creep is a deformation mechanism that may or may not constitute a failure mode. For example, moderate creep in concrete is sometimes welcomed because it relieves tensile stresses that might otherwise lead to cracking.Unlike brittle fracture, creep deformation does not occur suddenly upon the application of stress. Instead, strain accumulates as a result of long-term stress. Therefore, creep is a "time-dependent" deformation.อุณหภูมิในการคืบที่แมพอาจแตกต่างในวัสดุต่าง ๆ ตัวอย่าง ทังสเตนต้องอุณหภูมิในพันองศาก่อนคืบแมพสามารถเกิดขึ้นได้ ในขณะที่น้ำแข็งจะคืบที่อุณหภูมิใกล้ 0 ° C (32 ° F) [1] เป็นผลงานทั่วไป ลักษณะพิเศษของแมพคืบโดยทั่วไปกลายเป็นชัดประมาณ 30% ของจุดหลอมเหลว (เป็นวัดในระดับอุณหภูมิทางอุณหพลศาสตร์เช่นเคลวินหรืออย่างไร Rankine สำหรับโลหะ), และ 40-50% จุดหลอมเหลวเซรามิก [ต้องการอ้างอิง] วัสดุอย่างใดจะคืบเมื่อกำลังอุณหภูมิการละลาย เนื่องจากอุณหภูมิต่ำสุดคืบเกี่ยวข้องกับจุดหลอมเหลว สามารถเห็นคืบที่อุณหภูมิค่อนข้างต่ำสำหรับวัสดุบาง พลาสติกและโลหะละลายอุณหภูมิต่ำ รวม solders จำนวนมาก สามารถเริ่มต้นการคืบที่อุณหภูมิห้อง ตามที่สามารถเห็นได้อย่างเด่นชัดในท่อน้ำร้อนรอเก่า กระแสธารน้ำแข็งเป็นตัวอย่างของกระบวนการคืบในน้ำแข็ง
การแปล กรุณารอสักครู่..