DNA methyltransferases catalyze the transfer of a methyl group from S-adenosylmethionine to the target adenine or cytosine, eventually inducing the DNA methylation in both prokaryotes and eukaryotes. Herein, we developed a novel electrochemiluminescence biosensor to quantify DNA adenine methylation (Dam) methyltransferase (MTase) employing signal amplification of GO/AgNPs/luminol composites to enhance the assay sensitivity. The method was developed by designing a capture probe DNA, which was immobilized on gold electrode surface, to hybridize with azide complementary DNA to form the azide-terminated dsDNA. Then, alkynyl functionalized GO/AgNPs/luminol composites as the signal probe were immobilized to azide-terminated dsDNA modified electrode via click chemistry, resulting in a high electrochemiluminescence (ECL) signal. Once the DNA hybrid was methylated (under catalysis of Dam MTase) and further cleaved by Dpn I endonuclease (a site-specific endonuclease recognizing the duplex symmetrical sequence of 5′-G-Am-T-C-3′), GO/AgNPs/luminol composites release from the electrode surface to the solution, leading to significant reduction of the ECL signal.