In low-frequency sensing applications, it is often advantageous
to add a simple RC filter to the output of the device. Such a lowpass
filter improves the signal-to-noise ratio, and therefore the
resolution, of the device output signal. However, the addition of
an RC filter to the output of a sensor IC can result in undesirable
device output attenuation — even for DC signals.
Signal attenuation, ∆VATT , is a result of the resistive divider
effect between the resistance of the external filter, RF (see
Application 6), and the input impedance and resistance of the
customer interface circuit, RINTFC. The transfer function of this
resistive divider is given by:
Even if RF and RINTFC are designed to match, the two individual
resistance values will most likely drift by different amounts over
temperature. Therefore, signal attenuation will vary as a function
of temperature. Note that, in many cases, the input impedance,
RINTFC , of a typical analog-to-digital converter (ADC) can be as
low as 10 kΩ.
The ACS712 contains an internal resistor, a FILTER pin connection
to the printed circuit board, and an internal buffer amplifier.
With this circuit architecture, users can implement a simple
RC filter via the addition of a capacitor, CF (see Application 7)
from the FILTER pin to ground. The buffer amplifier inside of
the ACS712 (located after the internal resistor and FILTER pin
connection) eliminates the attenuation caused by the resistive
divider effect described in the equation for ∆VATT. Therefore, the
ACS712 device is ideal for use in high-accuracy applications
that cannot afford the signal attenuation associated with the use
of an external RC low-pass filter.