As we mentioned earlier, the RBD located in S1 subunit binds to DPP4 to initiate infection, and the HR1 and HR2 motifs in S2 subunit facilitate membrane fusion, resulting in the release of the viral genetic material into the host cell cytoplasm.43 Based on the crystallographic study, the RBD of the MERS-CoV S1 subunit ranges from residues 367 to 606 and can be divided into a core and an external subdomain.22 The receptor-binding motif (V484 to L567) of RBD is located in the external subdomain.32 The core subdomain contains a five-stranded antiparallel β-sheet in the center. The six connecting helices and two small β-strands collectively make a globular fold. Three disulfide bonds balance the core domain structure from the internal region. The RBD ends are located close to one another. The external subdomain of MERS-CoV RBD comprises a β-sheet with one small and three large strands organized in an antiparallel manner. It is attached to the RBD core through intervening loops and it attaches to the core subdomain like a clamp at the upper and lower positions. Two small 310 helices and most of the joining loops are present on the inner side of the sheet. The fourth disulfide bond is formed between the C503 and C526 residues, connecting the η3-helix with the β6-strand. Mutational studies have confirmed that residues Y499, L506, W513 and E553 in RBD are required for receptor binding and thus for viral entry.22, 32 Mutation of these residues significantly inhibits the interaction of RBD with DPP4. Three HR1 helices at the center and three HR2 chains adjacent to the core in the HR1 side grooves facilitate the release of the viral particles into the cytoplasm.16, 43 HR2P (HR2 peptide) that binds to the HR1 domain to block MERS-CoV S protein-induced membrane fusion has been reported.43 Moreover, other effective inhibitors that target RBD and could be used to control MERS-CoV infection have recently been reviewed by Xia et al.21
Two antibodies (REGN3051 and REGN3048) targeting RBD of S protein to prevent its binding to DPP4 were developed and found to be the potential inhibitors of MERS-CoV.44 These two antibodies were tested on a mouse model that was developed by substituting mouse DPP4 ORF with human DPP4 (hDPP4) ORF, assuring normal physiological expression of hDPP4. A previously developed animal model was effective but expressed hDPP4 in all types of cells, resulting in non-physiological expression.45 In a recent in vivo study, modified vaccinia virus Ankara, which stably expresses the MERS-CoV S protein, exhibited less or no MERS-CoV replication.46 Moreover, the vaccinated mouse was further infected with MERS-CoV and transduced with hDPP4 to prove its efficacy.46
As we mentioned earlier, the RBD located in S1 subunit binds to DPP4 to initiate infection, and the HR1 and HR2 motifs in S2 subunit facilitate membrane fusion, resulting in the release of the viral genetic material into the host cell cytoplasm.43 Based on the crystallographic study, the RBD of the MERS-CoV S1 subunit ranges from residues 367 to 606 and can be divided into a core and an external subdomain.22 The receptor-binding motif (V484 to L567) of RBD is located in the external subdomain.32 The core subdomain contains a five-stranded antiparallel β-sheet in the center. The six connecting helices and two small β-strands collectively make a globular fold. Three disulfide bonds balance the core domain structure from the internal region. The RBD ends are located close to one another. The external subdomain of MERS-CoV RBD comprises a β-sheet with one small and three large strands organized in an antiparallel manner. It is attached to the RBD core through intervening loops and it attaches to the core subdomain like a clamp at the upper and lower positions. Two small 310 helices and most of the joining loops are present on the inner side of the sheet. The fourth disulfide bond is formed between the C503 and C526 residues, connecting the η3-helix with the β6-strand. Mutational studies have confirmed that residues Y499, L506, W513 and E553 in RBD are required for receptor binding and thus for viral entry.22, 32 Mutation of these residues significantly inhibits the interaction of RBD with DPP4. Three HR1 helices at the center and three HR2 chains adjacent to the core in the HR1 side grooves facilitate the release of the viral particles into the cytoplasm.16, 43 HR2P (HR2 peptide) that binds to the HR1 domain to block MERS-CoV S protein-induced membrane fusion has been reported.43 Moreover, other effective inhibitors that target RBD and could be used to control MERS-CoV infection have recently been reviewed by Xia et al.21Two antibodies (REGN3051 and REGN3048) targeting RBD of S protein to prevent its binding to DPP4 were developed and found to be the potential inhibitors of MERS-CoV.44 These two antibodies were tested on a mouse model that was developed by substituting mouse DPP4 ORF with human DPP4 (hDPP4) ORF, assuring normal physiological expression of hDPP4. A previously developed animal model was effective but expressed hDPP4 in all types of cells, resulting in non-physiological expression.45 In a recent in vivo study, modified vaccinia virus Ankara, which stably expresses the MERS-CoV S protein, exhibited less or no MERS-CoV replication.46 Moreover, the vaccinated mouse was further infected with MERS-CoV and transduced with hDPP4 to prove its efficacy.46
การแปล กรุณารอสักครู่..
