แปลภาษาอังกฤษเป็นไทย ออนไลน์ แปลภาษา แปลข้อความ แปลบทความ แปลเอกสาร แปลประโยคอังกฤษเป็นไทยทั้งประโยค แปลเอกส3D Printing for the Rapid Prototyping of Structural Electronics
ERIC MACDONALD1,2 , RUDY SALAS1 , DAVID ESPALIN1 , MIREYA PEREZ1 , EFRAIN AGUILERA1 , DAN MUSE4 , AND RYAN B. WICKER1,3
1 W. M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX 79968, USA
2 Department of Electrical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
3 Department of Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
4 Printed Device Concepts, Inc., El Paso, TX 79922, USA
Corresponding author: M. Perez (maperez4@utep.edu)
This work was supported in part by the State of Texas Emerging Technology, in part by the National Aeronautics and Space Administration under Grant NNX13AR17A, in part by the MacIntosh Murchison Chair I in Engineering Endowment, and in part by the Air Force Research Laboratories, Kirtland, through the guidance of Dr. James Lyke. This work was conducted at W. M. Keck Center
for 3D Innovation, The University of Texas at El Paso.
ABSTRACT In new product development, time to market (TTM) is critical for the success and profitability of next generation products. When these products include sophisticated electronics encased in 3D packaging with complex geometries and intricate detail, TTM can be compromised—resulting in lost opportunity. The use of advanced 3D printing technology enhanced with component placement and electrical interconnect deposition can provide electronic prototypes that now can be rapidly fabricated in comparable time frames as traditional 2D bread-boarded prototypes; however, these 3D prototypes include the advantage of being embedded within more appropriate shapes in order to authentically prototype products earlier in the development cycle. The fabrication freedom offered by 3D printing techniques, such as stereolithography and fused deposition modeling have recently been explored in the context of 3D electronics integration— referred to as 3D structural electronics or 3D printed electronics. Enhanced 3D printing may eventually be employed to manufacture end-use parts and thus offer unit-level customization with local manufacturing; however, until the materials and dimensional accuracies improve (an eventuality), 3D printing technologies can be employed to reduce development times by providing advanced geometrically appropriate electronic prototypes. This paper describes the development process used to design a novelty six-sided gaming die. The die includes a microprocessor and accelerometer, which together detect motion and upon halting, identify the top surface through gravity and illuminate light-emitting diodes for a striking effect. By applying
3D printing of structural electronics to expedite prototyping, the development cycle was reduced from weeks to hours.
INDEX TERMS 3D printed electronics, additive manufacturing, direct-print, electronic gaming die, hybrid manufacturing, rapid prototyping, structural electronics, three-dimensional electronics.
I. INTRODUCTION
A new product typically undergoes several transformations before becoming available for sale to the general public. A new device idea is initially prototyped in order to evaluate the fit and finish of the final part as well as to optimize the fabrication process to identify difficulties in manufacture. These steps can be time-consuming and expensive, creating a significant obstacle for new product introductions especially for startups that may not have the appropriate, usually expen- sive, machining equipment required for prototyping.
Additive Manufacturing (AM) was introduced in the late
1980’s in order to rapidly prototype structures and allow manufacturers to circumvent the lengthy process of tra- ditional prototyping by providing either a scaled-down or
full-scale mechanical replica of the designed product. These devices were typically only conceptual models due to lim- itations of the AM technologies – in which compromises were made in terms of material choices, surface finish and dimensional accuracies. For instance, stereolithography (SL) provided high-accuracy and superior surface finish but with photo-curable materials that suffer from poor mechanical strength or durability and degrade or discolor with prolonged UV exposure, or alternatively, with fused deposition model- ing (FDM) which offers robust thermoplastic materials but at the expense of reduced spatial resolution and anisotropic mechanical strength with a loss of performance in the build direction. While AM technology continues to advance in terms of material properties and minimum features sizes, the
234
2169-3536 2014 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 2, 2014
technology until recently has remained best suited for man- ufacturing prototypes for conceptual modeling – relegated to only satisfying the need for evaluation of form and fit of the device casing or structural features.
Until now, no option has existed for validation of both form and functionality simultaneously – where functionality includes electronics, energy sources, sensors and displays – all of which require additional lead times for bread-boarding, debugging and integration. This paper describes a project showcasing an enhanced 3D printing technology that dramat- ically reduced the full design cycle of an example electronic device: a novelty six-sided gaming die. The process - from concept, through prototyping, to the final manufactured part - is described noting the significant advantages of employing AM. In this example, form, fit, aesthetics and functionality were explored by 3D printing several versions of electronic devices as rapid, high-fidelity prototypes prior to committing to traditional production. The eventual goal, is for 3D printing to become the preferred manufacturing method for industries where the use of AM structures provides a real advantage, such as in the production of novelty toys, unmanned aerial vehicles (UAVs), satellites, and other low volume high value applications.
II. PREVIOUS WORK
AM techniques, since inception, have been extensively used for successful rapid prototyping of mechanical structures. These technologies were exceptionally well suited for the fabrication of complex geometries, which allowed designers to verify the fit and form of a product within a few hours of completing the CAD design [1]. However due to the limita- tions resulting from the distinct material requirements for AM processing, the designer was unable to fabricate the prototype in the material required for the end-use final product [2]. AM has also been used to improve TTM through rapid tool- ing in which molds could be fabricated more quickly and then subsequently used in a traditional manufacturing process [3] – in this case, proving vital in cost and time-savings for the development process. Further, AM technologies have also been used to produce end-use parts in low volumes through rapid manufacturing techniques that proved to be economic because there was no need for tooling and logistics costs were decreased [4]. However, in the context of pro- totyping electronic circuits, which are increasingly encased in 3D forms, rapid prototyping only provided fit and form verification of the housing. In order to verify functionality, a separate bread boarding activity was required that did not integrate the verification of form with function – two separate activities.
Recently, these deficiencies have begun to be addressed through enhanced 3D printing, such as SL or FDM, in combi- nation with both conductor embedding and robotic pick-and- place. The AM technology can fabricate a dielectric substrate in any arbitrary form, while either micro-dispensing or wire embedding can be used to deposit electrical interconnects through the precise printing of conductive inks or wires
to realize traces between components. With this integrated manufacturing capability along with the insertion of elec- tronic components (i.e. chips, passives, batteries, antennas, sensors, etc.) fully functional 3D structural electronic devices can be achieved [5]–[13].
The seminal concept of printing multi-functionality can be traced back at least two decades to the experiments described in [14], where a two-part polyurethane foam was cast to form a preferred packaging for existing electronic components. This process was patented in 1994 [15] and in 1996 with fund- ing from the Defense Advanced Research Projects Agency (DARPA) and demonstrated the repackaging of the compo- nents of a personal computer for divers into a case conformal to the leg of a diver and waterproof to 100 feet [16]. Sub- sequently, the research led to the creation of improved algo- rithms for optimization of these integrated processes [17].
In 2004, [18]–[20] developed a dual process that included the high accuracy capabilities of SL with the material dispens- ing capabilities and precision of Direct Write technologies to deposit silver loaded inks, which provided the electrical interconnects between components to enable true electronic functionality. This methodology was patented in 2008 [21]. The research was further enhanced with the creation of a custom-built machine that integrated an SL system with a dispensing pump to automate the process. Fabrication of complex, intricately detailed dielectric substrates created with multiple layers of components and interconnect was now possible. An example included a functional circuit with a
555-tim
With this integrated manufacturing capability along with the insertion of elec - tronic components (i.e. Chips passives,,, ,,, batteries antennas sensors etc.) fully functional 3D structural electronic devices can be achieved [5] - [13].
The seminal. Concept of printing multi-functionality can be traced back at least two decades to the experiments described 14, in []แปลภาษาอังกฤษเป็นไทยออนไลน์แปลภาษาแปลข้อความแปลบทความแปลเอกสารแปลประโยคอังกฤษเป็นไทยทั้งประโยคแปลเอกสการพิมพ์ 3D เพื่อสร้างต้นแบบอย่างรวดเร็วของโครงสร้างอิเล็กทรอนิกส์
ค macdonald1,2 รูดี้ salas1 เดวิด espalin1 mireya perez1 efrain , , aguilera1 แดน muse4 และไรอัน พ. wicker1,3
1 WKeck ศูนย์นวัตกรรม 3D โดยมหาวิทยาลัยเทกซัสที่เอลปาโซ , El Paso , TX 79968 USA
2 ภาควิชาวิศวกรรมไฟฟ้า มหาวิทยาลัยเท็กซัส ใน El Paso , El Paso , TX 79968 USA
3 ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทกซัสที่เอลปาโซ , El Paso , TX 79968 สหรัฐอเมริกา
4 พิมพ์อุปกรณ์แนวคิด , Inc , El Paso , TX 79922 , ผู้เขียนที่สหรัฐอเมริกา
: M . เปเรซ ( maperez4 @ utep . edu )
งานนี้ได้รับการสนับสนุนในส่วนของรัฐของเท็กซัสเทคโนโลยีใหม่ ในส่วนขององค์การบริหารการบินและอวกาศแห่งชาติ ภายใต้สิทธิ์ nnx13ar17a ในส่วนของเก้าอี้ Macintosh ในการกระจายงาน และในส่วนที่กองทัพอากาศงานวิจัยห้องปฏิบัติการ , เคิร์ท ผ่านการแนะนำของ ดร. เจมส์ lyke . งานนี้จัดขึ้น ณ . ม. เคกศูนย์
นวัตกรรม 3Dมหาวิทยาลัยเทกซัสที่เอลปาโซ
นามธรรมในการพัฒนาผลิตภัณฑ์ใหม่ เวลาไปตลาด ( TTM ) เป็นสิ่งสำคัญสำหรับความสำเร็จและความสามารถในการทำกำไรของผลิตภัณฑ์รุ่นต่อไป เมื่อผลิตภัณฑ์เหล่านี้รวมถึงความซับซ้อนอิเล็กทรอนิกส์ encased ใน 3D บรรจุภัณฑ์ที่มีโครงสร้างซับซ้อนและละเอียดประณีต ทีทีเอ็ม ได้ถูกบุกรุกทำให้เสียโอกาสการใช้เทคโนโลยีการพิมพ์ 3 มิติขั้นสูงขั้นสูงกับการจัดวางองค์ประกอบ และไฟฟ้า ( สะสมสามารถให้ต้นแบบอิเล็กทรอนิกส์ที่ตอนนี้สามารถประดิษฐ์ในกรอบเวลาเดียวกันอย่างรวดเร็ว เป็นขนมปังแบบ 2D ต้นแบบขึ้น อย่างไรก็ตามต้นแบบ 3D เหล่านี้รวมถึงประโยชน์ของการฝังตัวอยู่ในรูปร่างที่เหมาะสมมากขึ้นเพื่อแท้จริงต้นแบบผลิตภัณฑ์ก่อนหน้านี้ในรอบการพัฒนา การผลิตอิสระที่เสนอ โดยเทคนิคการพิมพ์ 3 มิติเช่น stereolithography และผสมแบบสำรวจการได้รับเมื่อเร็ว ๆนี้ในบริบทของการบูรณาการ - อิเล็กทรอนิกส์ 3 มิติเรียกว่าอิเล็กทรอนิกส์โครงสร้าง 3 มิติหรือ 3D พิมพ์อิเล็กทรอนิกส์ ปรับปรุงการพิมพ์ 3D อาจจะถูกใช้เพื่อการผลิตชิ้นส่วนใช้สิ้นสุด และจึงเสนอการปรับแต่งระดับหน่วยมีการผลิตท้องถิ่น อย่างไรก็ตามซึ่งร่วมกันตรวจจับการเคลื่อนไหว และเมื่อหยุด ระบุพื้นผิวด้านบนผ่านแรงโน้มถ่วง และส่องสว่างไดโอดเปล่งแสงเพื่อผลที่โดดเด่น โดยการใช้
พิมพ์อิเล็กทรอนิกส์โครงสร้างเพื่อเร่งการสร้างต้นแบบวงจรการพัฒนาลดลงจากสัปดาห์ชั่วโมง
ดัชนีด้าน 3D พิมพ์อิเล็กทรอนิกส์ เพิ่มการผลิต พิมพ์โดยตรง , ตาย , เกมอิเล็กทรอนิกส์ไฮบริด ผลิตจนกระทั่งวัสดุและมิติความถูกต้องปรับปรุง ( ไม่แน่นอน ) , การพิมพ์ 3D เทคโนโลยีที่สามารถนำมาใช้เพื่อลดเวลาในการพัฒนาโดยการให้ต้นแบบอิเล็กทรอนิกส์ทางเรขาคณิตที่เหมาะสมขั้นสูง กระดาษนี้จะอธิบายถึงกระบวนการพัฒนาที่ใช้ออกแบบนวัตกรรมหกเหลี่ยมตายเกม ตาย รวมถึงไมโครโปรเซสเซอร์และ accelerometer ,การสร้างต้นแบบอย่างรวดเร็ว , โครงสร้าง อุปกรณ์อิเล็กทรอนิกส์ อุปกรณ์อิเล็กทรอนิกส์ สามมิติ ผมแนะนำ
ผลิตภัณฑ์ใหม่มักจะผ่านหลายแปลงก่อนที่จะกลายเป็นใช้ได้สำหรับการขายให้กับประชาชนทั่วไป ไอเดียอุปกรณ์ใหม่จะเริ่มต้นดูแลบริการเพื่อประเมินพอดีและเสร็จสิ้นในส่วนสุดท้าย รวมทั้งเพื่อเพิ่มประสิทธิภาพกระบวนการผลิตเพื่อระบุปัญหาในการผลิตขั้นตอนเหล่านี้สามารถใช้เวลานานและมีราคาแพง , การสร้างอุปสรรคที่สำคัญสำหรับการเปิดตัวสินค้าใหม่โดยเฉพาะสำหรับ startups ที่อาจไม่ได้เหมาะสมโดยปกติ expen - sive อุปกรณ์เครื่องจักรที่จำเป็นสำหรับสร้างต้นแบบการผลิตสารเติมแต่ง ( AM ) .
ใช้สาย
การแปล กรุณารอสักครู่..
