Abstract
Closed cell elastomeric polydimethylsiloxane (PDMS) based polymerized medium internal phase emulsions (polyMIPEs) containing an aqueous solution of sodium hydrogen carbonate (NaHCO3) have been produced. Via thermal decomposition of NaHCO3, carbon dioxide was released into the polyMIPE structure to act as a blowing agent. When placed into an atmosphere with reduced pressure, these macroporous elastomers expanded to many times their original size, with a maximum expansion of 30 times. This expansion was found to be repeatable and reproducible. The extent of volume expansion was determined primarily by the dispersed phase volume ratio of the emulsion template; polyMIPEs with 60% dispersed phase content produced greater volume expansion ratios than polyMIPEs with 50% dispersed phase. Increasing the concentration of NaHCO3 in the dispersed phase also led to increased expansion due to the greater volume of gas forming within the porous structure of the silicone elastomer. The expansion ratio could be increased by doubling the agitation time during the emulsification process to form the MIPEs, as this decreased the pore wall thickness and hence the elastic restoring force of the porous silicone elastomer. Although MIPEs with 70% dispersed phase could be stabilized and successfully cured, the resultant polyMIPE was mechanically too weak and expanded less than polyMIPEs with a dispersed phase of 60%. It was also possible to cast the liquid emulsion into thin polyMIPE films, which could be expanded in vacuum, demonstrating that these materials have potential for use in self-sealing containers.