Proof of the Pythagorean Theorem using Algebra
We can show that a2 + b2 = c2 using Algebra
Take a look at this diagram ... it has that "abc" triangle in it (four of them actually)
Area of Whole Square
It is a big square, with each side having a length of a+b, so the total area is:
A = (a+b)(a+b)
Area of The Pieces
Now let's add up the areas of all the smaller pieces:
First, the smaller (tilted) square has an area of A = c2
And there are four triangles, each one has an area of A =½ab
So all four of them combined is A = 4(½ab) = 2ab
So, adding up the tilted square and the 4 triangles gives: A = c2+2ab