Electroactivity of the isolated strainsThe electroactivity of the isol การแปล - Electroactivity of the isolated strainsThe electroactivity of the isol ไทย วิธีการพูด

Electroactivity of the isolated str

Electroactivity of the isolated strains
The electroactivity of the isolates was checked with stainless
steel cathodes polarized at 0.20 V/SCE in filtered natural seawater.
All the isolates produced stable current densities in the
0.5e2 mA m2 range (Table 1). A previous study of 19 strains isolated from a similar seawater O2-reducing biocathode reported
similar current densities of 0.4 and 1 mA m2 but for only two
isolates (Acinetobacter johsonii and Winogradskyella poriferorum),
while the others did not give any current (Erable et al., 2010). Here,
the isolation procedure led to only 4 strains but each revealed its
ability to catalyse O2-reduction. After 14 days, the polarization was
changed to 0.30 V/SCE and the current density increased immediately by a factor of 4e10. A maximum of 15 mA m2 was produced
by the Pseudoalteromonas sp.
Similar experiments were reproduced in filtered natural
seawater and in synthetic seawater, but starting the polarization
directly at 0.30 V/SCE. Each strain produced significant current
densities of up to 40 mA m2 (Table 1) which decreased drastically
when stirring was stopped. For instance, during the 3rd assay in
sterile natural seawater, the reduction current densities above
30 mA m2 (in absolute value) displayed by the three strains
decreased to around 10 mA m2 in the absence of stirring. The
current was limited by oxygen transfer to the electrode surface,
which was significantly slower in a quiescent solution. In contrast,
aeration of the reactors by air bubbling significantly increased the
current densities as shown, for instance, on cyclic voltammetries
(Fig. 2), which confirmed that the current value was controlled by
oxygen transfer. Surprisingly, the current started as soon as the
polarization was established (Fig. 1) while, more generally, the
current would be expected to start from zero and increase gradually
with time. Here, in contrast, the current was maximum since the
beginning of polarization (e.g. Bacillus, Marinobacter and Pseudoalteromonas sp. in Fig. 1) or represented a considerable percentage of the maximum (e.g. around 60% of the maximum for
Roseobacter sp. in Fig. 1).
The main difference in the present protocol with respect to the
previous study was the preliminary immersion of the clean electrode in the bacterial suspension before transferring it into the
electrochemical reactor. This step was not present in the previous
studies. It seems probable that, thanks to this preliminary step,
microbial cells were present on the electrode surface from the
beginning of the electrochemical experiments. This supplementary
step explained why the strains were able to produce current from
the beginning of polarization. The initial adhesion of the bacterial
cells to the electrode surface is consequently a crucial step in the
formation of monospecies biocathodes. The small increase in current during 14 days of polarization (Fig. 1) indicated that the current was due to the initial adhesion of the cells during the
preliminary immersion of the clean electrode in the bacterial suspension and not to gradual microbial colonization of the surface
during the electrochemical experimentation.
At the end of the experiments, the microbial colonization of the
electrode surfaces was always low, with biofilm coverage ratios
from 7 to 25 %, as determined by epifluorescent microscopy for the
biocathodes formed in synthetic seawater (1st experiment in
Table 1, Fig. 3). There was no straightforward correlation between
the biofilm coverage ratio and the current density provided by the
biocathodes. Nevertheless, the lowest current density, which was
observed with the Roseobacter sp. (0.5 mA m2) in this experiment,
corresponded to the lowest coverage ratio (7%). The other three
biocathodes provided current densities from 3 to 35 mA m2 with
biofilm coverage ranging from 15 to 25 %. Moreover, in this group,
the highest current density (35 mA m2) was provided by the
Marinobacter biocathode, which showed a different biofilm
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
Electroactivity of the isolated strainsThe electroactivity of the isolates was checked with stainlesssteel cathodes polarized at 0.20 V/SCE in filtered natural seawater.All the isolates produced stable current densities in the0.5e2 mA m2 range (Table 1). A previous study of 19 strains isolated from a similar seawater O2-reducing biocathode reportedsimilar current densities of 0.4 and 1 mA m2 but for only twoisolates (Acinetobacter johsonii and Winogradskyella poriferorum),while the others did not give any current (Erable et al., 2010). Here,the isolation procedure led to only 4 strains but each revealed itsability to catalyse O2-reduction. After 14 days, the polarization waschanged to 0.30 V/SCE and the current density increased immediately by a factor of 4e10. A maximum of 15 mA m2 was producedby the Pseudoalteromonas sp.Similar experiments were reproduced in filtered naturalseawater and in synthetic seawater, but starting the polarizationdirectly at 0.30 V/SCE. Each strain produced significant currentdensities of up to 40 mA m2 (Table 1) which decreased drasticallywhen stirring was stopped. For instance, during the 3rd assay insterile natural seawater, the reduction current densities above30 mA m2 (in absolute value) displayed by the three strainsdecreased to around 10 mA m2 in the absence of stirring. Thecurrent was limited by oxygen transfer to the electrode surface,which was significantly slower in a quiescent solution. In contrast,aeration of the reactors by air bubbling significantly increased thecurrent densities as shown, for instance, on cyclic voltammetries(Fig. 2), which confirmed that the current value was controlled byoxygen transfer. Surprisingly, the current started as soon as thepolarization was established (Fig. 1) while, more generally, thecurrent would be expected to start from zero and increase graduallywith time. Here, in contrast, the current was maximum since thebeginning of polarization (e.g. Bacillus, Marinobacter and Pseudoalteromonas sp. in Fig. 1) or represented a considerable percentage of the maximum (e.g. around 60% of the maximum forRoseobacter sp. in Fig. 1).The main difference in the present protocol with respect to theprevious study was the preliminary immersion of the clean electrode in the bacterial suspension before transferring it into theelectrochemical reactor. This step was not present in the previousstudies. It seems probable that, thanks to this preliminary step,microbial cells were present on the electrode surface from thebeginning of the electrochemical experiments. This supplementarystep explained why the strains were able to produce current fromthe beginning of polarization. The initial adhesion of the bacterialcells to the electrode surface is consequently a crucial step in theformation of monospecies biocathodes. The small increase in current during 14 days of polarization (Fig. 1) indicated that the current was due to the initial adhesion of the cells during thepreliminary immersion of the clean electrode in the bacterial suspension and not to gradual microbial colonization of the surfaceduring the electrochemical experimentation.At the end of the experiments, the microbial colonization of theelectrode surfaces was always low, with biofilm coverage ratiosfrom 7 to 25 %, as determined by epifluorescent microscopy for thebiocathodes formed in synthetic seawater (1st experiment inTable 1, Fig. 3). There was no straightforward correlation betweenthe biofilm coverage ratio and the current density provided by thebiocathodes. Nevertheless, the lowest current density, which wasobserved with the Roseobacter sp. (0.5 mA m2) in this experiment,corresponded to the lowest coverage ratio (7%). The other threebiocathodes provided current densities from 3 to 35 mA m2 withbiofilm coverage ranging from 15 to 25 %. Moreover, in this group,the highest current density (35 mA m2) was provided by theMarinobacter biocathode, which showed a different biofilm
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
Electroactivity ของแยกสายพันธุ์
electroactivity ของเชื้อได้รับการตรวจสอบกับสแตนเลส
cathodes เหล็กขั้วที่? 0.20 V / SCE ในการกรองน้ำทะเลธรรมชาติ.
ไอโซเลททั้งหมดที่ผลิตในปัจจุบันความหนาแน่นมั่นคงใน
0.5e2 mA M? 2 ช่วง (ตารางที่ 1) การศึกษาก่อนหน้า 19 สายพันธุ์ที่แยกได้จากน้ำทะเลที่คล้ายกัน O2 ลด biocathode รายงาน
ความหนาแน่นในปัจจุบันที่คล้ายกันของ? 0.4? 1 mA M? 2 แต่เพียงสอง
ไอโซเลท (Acinetobacter johsonii และ Winogradskyella poriferorum)
ในขณะที่คนอื่น ๆ ไม่ได้ให้ใด ๆ ในปัจจุบัน (Erable et al., 2010) ที่นี่
ขั้นตอนการแยกนำไปสู่การมีเพียง 4 สายพันธุ์ แต่แต่ละเปิดเผยของ
ความสามารถในการกระตุ้น O2 ลด หลังจาก 14 วัน, โพลาไรซ์ที่ถูก
เปลี่ยนไป? 0.30 V / SCE และความหนาแน่นกระแสไฟฟ้าเพิ่มขึ้นทันทีโดยปัจจัยที่ 4E10 สูงสุดไม่เกิน 15 mA M? 2 ถูกผลิต
โดย Pseudoalteromonas Sp.
ทดลองที่คล้ายกันถูกทำซ้ำในการกรองธรรมชาติ
น้ำทะเลและในน้ำทะเลสังเคราะห์ แต่เริ่มต้นโพลาไรซ์
โดยตรงที่? 0.30 V / SCE สายพันธุ์แต่ละผลิตในปัจจุบันอย่างมีนัยสำคัญ
ความหนาแน่นสูงถึง 40 mA M? 2 (ตารางที่ 1) ซึ่งลดลงอย่างเห็นได้ชัด
เมื่อกวนก็หยุด ยกตัวอย่างเช่นในระหว่างการทดสอบ 3 ใน
น้ำทะเลธรรมชาติผ่านการฆ่าเชื้อลดความหนาแน่นในปัจจุบันดังกล่าวข้างต้น
30 mA M? 2 (ในค่าสัมบูรณ์) ที่แสดงโดยสามสายพันธุ์
ลดลงประมาณ 10 mA M? 2 ในกรณีที่ไม่มีกวน
ปัจจุบันถูก จำกัด โดยการโอนออกซิเจนไปยังพื้นผิวขั้วไฟฟ้า
ซึ่งเป็นช้าลงอย่างมีนัยสำคัญในการแก้ปัญหานิ่ง ในทางตรงกันข้าม
การเติมอากาศของเครื่องปฏิกรณ์โดยเดือดอากาศที่เพิ่มขึ้นอย่างมีนัยสำคัญ
ความหนาแน่นในปัจจุบันที่แสดงตัวอย่างเช่นใน voltammetries วงจร
(รูปที่ 2.) ซึ่งได้รับการยืนยันว่ามูลค่าปัจจุบันถูกควบคุมโดย
การถ่ายโอนออกซิเจน น่าแปลกที่ปัจจุบันเริ่มต้นทันทีที่
โพลาไรซ์ก่อตั้งขึ้น (รูปที่ 1). ในขณะที่มากขึ้นโดยทั่วไป
ในปัจจุบันจะคาดว่าจะเริ่มต้นจากศูนย์และค่อยๆเพิ่มขึ้น
ตามกาลเวลา ที่นี่ในทางตรงกันข้ามในปัจจุบันได้สูงสุดนับตั้งแต่
จุดเริ่มต้นของโพลาไรซ์ (เช่น Bacillus, Marinobacter และ Pseudoalteromonas Sp. ในรูป. 1) หรือคิดเป็นร้อยละมากสูงสุด (เช่นประมาณ 60% ของจำนวนสูงสุดสำหรับ
Roseobacter Sp. ในรูป 1)..
แตกต่างที่สำคัญในพิธีสารเกี่ยวกับการ
ศึกษาก่อนหน้านี้คือการแช่เบื้องต้นของอิเล็กโทรดที่สะอาดในการระงับแบคทีเรียก่อนที่จะถ่ายลงใน
เครื่องปฏิกรณ์เคมีไฟฟ้า ขั้นตอนนี้ไม่ได้อยู่ในก่อนหน้านี้
การศึกษา ดูเหมือนว่าน่าจะเป็นที่ขอบคุณไปยังขั้นตอนเบื้องต้นนี้
เซลล์จุลินทรีย์อยู่ในปัจจุบันบนพื้นผิวขั้วไฟฟ้าจาก
จุดเริ่มต้นของการทดลองทางเคมีไฟฟ้า นี้เสริม
ขั้นตอนที่อธิบายว่าทำไมสายพันธุ์ที่มีความสามารถในการผลิตในปัจจุบันจาก
จุดเริ่มต้นของโพลาไรซ์ การยึดเกาะเริ่มต้นของแบคทีเรีย
เซลล์ผิวขั้วไฟฟ้าเป็นจึงเป็นขั้นตอนสำคัญใน
การก่อตัวของ monospecies biocathodes การเพิ่มขึ้นของขนาดเล็กในปัจจุบันในช่วง 14 วันของการโพลาไรซ์ (รูปที่ 1). ชี้ให้เห็นว่าในปัจจุบันเป็นผลมาจากการยึดเกาะเริ่มต้นของเซลล์ในระหว่างการ
แช่เบื้องต้นของอิเล็กโทรดที่สะอาดในการระงับแบคทีเรียและไม่ได้ที่จะตั้งรกรากจุลินทรีย์อย่างค่อยเป็นค่อยไปของพื้นผิว
ในช่วง ทดลองไฟฟ้า.
ในตอนท้ายของการทดลองที่ตั้งรกรากจุลินทรีย์ของ
พื้นผิวขั้วไฟฟ้าต่ำมักจะมีอัตราส่วนไบโอฟิล์ม
7-25% ตามที่กำหนดโดยใช้กล้องจุลทรรศน์ epifluorescent สำหรับ
biocathodes เกิดขึ้นในน้ำทะเลสังเคราะห์ (1 ทดลองใน
ตารางที่ 1 มะเดื่อ. 3) ไม่มีความสัมพันธ์ตรงไปตรงมาระหว่าง
อัตราส่วนไบโอฟิล์มและความหนาแน่นกระแสให้โดย
biocathodes อย่างไรก็ตามความหนาแน่นกระแสต่ำสุดซึ่งได้รับการ
ตั้งข้อสังเกตกับ Roseobacter SP (0.5 mA M? 2) ในการทดลองนี้
ตรงกับอัตราส่วนที่ต่ำที่สุด (7%) อีกสาม
biocathodes จัดให้มีความหนาแน่นในปัจจุบัน 3-35 mA M? 2 กับ
ความคุ้มครองไบโอฟิล์มตั้งแต่ 15-25% นอกจากนี้ในกลุ่มนี้
มีความหนาแน่นสูงสุดในปัจจุบัน (35 mA M? 2) ถูกจัดให้โดย
biocathode Marinobacter ซึ่งแสดงให้เห็นว่าไบโอฟิล์มที่แตกต่างกัน
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
electroactivity ของแยกสายพันธุ์การ electroactivity ของสายพันธุ์ก็ถูกตรวจสอบด้วยสแตนเลสขั้วแคโทดเหล็กที่ 0.20 v / SCE ในกรองน้ำทะเลธรรมชาติทุกสายพันธุ์ผลิตความหนาแน่นกระแสที่มั่นคงใน0.5e2 มา 2 ช่วง ( ตารางที่ 1 ) การศึกษาก่อนหน้านี้ของ 19 สายพันธุ์ที่แยกได้จากน้ำทะเล ออกซิเจน ลด biocathode รายงานคล้ายกันที่คล้ายกันในปัจจุบันความหนาแน่นของ 0.4 และ 1 มา M2 แต่เพียงสองไอโซเลต ( Acinetobacter johsonii และ winogradskyella poriferorum )ในขณะที่คนอื่น ๆไม่ให้ใด ๆในปัจจุบัน ( erable et al . , 2010 ) ที่นี่ขั้นตอนการแยกนำเพียง 4 สายพันธุ์ แต่แต่ละเปิดเผยความสามารถในการกระตุ้นออกซิเจนลดลง หลังจาก 14 วัน โพลาไรเซชันคือเปลี่ยนเป็น 0.30 v / SCE และความหนาแน่นเพิ่มขึ้นทันที โดยปัจจัยที่ 4e10 . สูงสุด 15 ตารางเมตร ผลิตมาโดย pseudoalteromonas sp .การทดลองที่คล้ายกันถูกทำซ้ำในกรองธรรมชาติน้ำทะเลและน้ำทะเลสังเคราะห์ แต่เริ่มโพลาไรเซชันโดยตรงที่ 0.30 v / สวย . แต่ละสายพันธุ์ที่สำคัญในปัจจุบันความหนาแน่นได้ถึง 40 มา M2 ( ตารางที่ 1 ) ซึ่งลดลงอย่างมากเมื่อกวนก็หยุด ตัวอย่างเช่นในระหว่างการทดสอบครั้งสุดท้ายน้ำทะเลธรรมชาติฆ่าเชื้อลดความหนาแน่นสูงกว่าปัจจุบัน30 มา M2 ( ค่าสัมบูรณ์ ) แสดงโดย 3 สายพันธุ์ลดลงไปประมาณ 10 มา M2 ในการปลุกเร้า ที่ปัจจุบันถูก จำกัด โดยการส่งผ่านออกซิเจนสู่ผิวขั้วไฟฟ้าซึ่งอย่างช้าลงในโซลูชั่นที่มี . ในทางตรงกันข้ามอากาศของเครื่องปฏิกรณ์โดยอากาศฟองมากเพิ่มขึ้นปัจจุบัน ) แสดงเป็น ตัวอย่าง ใน voltammetries ไซคลิก( รูปที่ 2 ) ซึ่งยืนยันว่าค่าปัจจุบันถูกควบคุมโดยการถ่ายโอนออกซิเจน จู่ ๆ ปัจจุบันเริ่มทันทีที่โพลาไรเซชันถูกก่อตั้งขึ้น ( รูปที่ 1 ) ขณะที่ มากขึ้นโดยทั่วไปปัจจุบันจะถูกคาดว่าจะเริ่มต้นจากศูนย์ และค่อยๆเพิ่มขึ้นกับเวลา ที่นี่ ในทางตรงกันข้าม กระแสสูงสุดตั้งแต่จุดเริ่มต้นของโพลาไรเซชัน ( เช่น Bacillus , marinobacter pseudoalteromonas sp . และในรูปที่ 1 ) หรือแสดงเป็นเปอร์เซ็นต์มากที่สุด ( เช่น ประมาณ 60% ของสูงสุดสำหรับroseobacter sp . ในรูปที่ 1 )ความแตกต่างหลักในขั้นตอนปัจจุบัน ไหว้พระการศึกษาก่อนหน้านี้เป็นเบื้องต้นของไฟฟ้าที่สะอาดแช่ใน bacterial suspension ก่อนโอนมันเข้าไปเครื่องปฏิกรณ์เคมีไฟฟ้า . ขั้นตอนนี้ไม่ได้อยู่ในก่อนหน้านี้ศึกษา มันน่าจะเป็นอย่างนั้น เพราะขั้นตอนนี้เบื้องต้นจุลินทรีย์เซลล์ที่อยู่บนพื้นผิวขั้วไฟฟ้าจากจุดเริ่มต้นของการทดลองทางเคมีไฟฟ้า นี้เสริมขั้นตอนที่อธิบายถึงสายพันธุ์ที่สามารถผลิตกระแสไฟฟ้าจากจุดเริ่มต้นของโพลาไรเซชัน . การเริ่มต้นของแบคทีเรียเซลล์พื้นผิวขั้วไฟฟ้าจึงเป็นขั้นตอนที่สำคัญในการก่อตัวของ monospecies biocathodes . การเพิ่มขึ้นเล็กน้อยในช่วง 14 วันปัจจุบันของโพลาไรเซชัน ( รูปที่ 1 ) พบว่า ปัจจุบันเนื่องจากการยึดเกาะของเซลล์ในเบื้องต้นการทำความสะอาดเบื้องต้นของไฟฟ้าใน bacterial suspension และไม่ให้กลุ่มจุลินทรีย์อย่างค่อยเป็นค่อยไปของพื้นผิวในระหว่างการทดลองทางเคมีไฟฟ้าเมื่อสิ้นสุดการทดลองการล่าอาณานิคมของจุลินทรีย์พื้นผิวขั้วไฟฟ้ามักจะต่ำ กล่าวคือ อัตราส่วนความคุ้มครองจาก 7 ถึง 25 % เมื่อพิจารณาจาก epifluorescent กล้องจุลทรรศน์สำหรับbiocathodes เกิดขึ้นในน้ำทะเลสังเคราะห์ ( 1 ในการทดลองตารางที่ 1 รูปที่ 3 ) มันไม่ตรงไปตรงมา ความสัมพันธ์ระหว่างกล่าวคือที่อัตราส่วนและความหนาแน่นกระแสโดยbiocathodes . อย่างไรก็ตาม ความหนาแน่นต่ำ ซึ่งตรวจสอบกับ roseobacter sp . ( 0.5 มาตารางเมตร ) ในการทดลองนี้ตรงกับอัตราส่วนต่ำสุด ( ร้อยละ 7 ) สามอื่น ๆbiocathodes ให้ความหนาแน่นกระแสจาก 3 35 มาตร.ฟิล์มครอบคลุมตั้งแต่ 15 ถึง 25 % นอกจากนี้ ในกลุ่มนี้ความหนาแน่นกระแสสูงสุด ( 35 มา m2 ) โดยmarinobacter biocathode ซึ่งพบว่าฟิล์มที่แตกต่างกัน
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: