Acids are used to decrease the pH of foods. By doing so, they can improve its microbial stability and impact its taste by imparting their own flavor and modifying the taste perception of other ingredients. By improving the food's microbial stability, the acids can be used as preservatives in acidification processes. More broadly, conventional food preservative processes, for example, canning, freezing, acidification, refrigeration, among others, typically involve multiple heat treatment steps and/or a combination of heat treatment with other negative processing steps that affect food quality and flavor. However, consumers are no longer willing to compromise the quality of foods that results from some of these negative processing steps. Accordingly, numerous solutions have been set forth to attempt to minimize the negative steps that affect food quality and flavor.
In acidification, to reach the desired pH level, manufacturers have the choice between various acids. Tradition, labeling, economics, stability, quality, and supply are some of the factors that may affect a manufacturer's choice of which of the various acids to use. Additionally, the degree of acidification performed can reduce the amount of downstream food preservative processes that may be utilized, but a higher degree of acidification can negatively impact the flavor and taste of the food.
Although some of prior attempts have improved some aspects of food quality, flavor, and taste, a need exists for additional further improvements.
Many reported instances exist in both the patent and scientific literature with respect to acidifying high pH foods to pH values less than 4.6 so that thermal processes of lesser intensity than those used to sterilize low acid canned foods can be used to process them. However, particularly when mixed acids are used to achieve these lower pH values, the order of addition has not been enunciated well. Typically, a mixture of acids is used without specifying the order of addition of the acids, including which acid is added first. It may be partly due to the pKa values for the ionizations of the commonly used organic acids being relatively close together. Additionally, a current concern exists among public health officials that the level of sodium in the average diet is too high. Partly it is due to the high concentration of common salt in processed foods. Salt, like sugar, has the sensory ability to reduce the perception of sour taste of acidified foods. Food processors have used this approach to acidify foods to pH values less than 4.6 and cover up the resulting sour taste by the use of high amounts of salt. By the judicious use of mixed acids, particularly utilizing the order of addition effects, the sourness of acidified foods can be reduced, consequently reducing the salt concentration in processed food products.
As a third area of use of the mixed acids order of addition technology, an antimicrobial compound or system can be used in conjunction with these acidifying effects to reduce the microbial load in acidified foods, prior to thermal processing. This approach can enable the reduction of the intensity of thermal processes used to process such foods. This approach can be particularly useful because naturally occurring antimicrobials, such as white mustard essential oil, can be used in such an application. Today's consumers looking for flavorful, safe, and convenient foods will like the advantages that this combined approach will bring towards appealing to their tastes