6. Cost estimatesThe above mass and energy balances provided the basis การแปล - 6. Cost estimatesThe above mass and energy balances provided the basis ไทย วิธีการพูด

6. Cost estimatesThe above mass and

6. Cost estimates
The above mass and energy balances provided the basis
for estimating capital, coal, and non-fuel operating and
maintenance costs for each process configuration. Capital
costs (± 30 % accuracy, expressed in 2002 US$) were estimated
for commercially-mature (‘‘Nth plant’’) systems by
major equipment area for manufacture and construction at
a United States location primarily based on reference
overnight installed costs from one of two sources [Moore,
2003; Kreutz et al., 2003] (Table 8).
The reference capital costs were scaled (using scaling
exponents in Table 8) to the capacities corresponding to
the plants described in Tables 5 and 7 for methanol and
DME, respectively. Since fuel production is of primary
interest in the present analysis, to facilitate cost comparisons
among different process configurations, we further
developed our capital cost estimates for process configurations
producing the same amount of liquid fuel in all
cases. We used the fuel output of the recycle case as the
common output level. The plant capacities in Tables 5 and
7 for the OT cases have been scaled up accordingly. The
resulting plant sizes and installed capital cost estimates
are shown in Tables 9 and 10 for methanol and DME
respectively. Note 1 in these tables provides some additional
details on our cost estimating methodology.
The above capital costs for methanol and DME would
be lower if estimated on the basis of Chinese manufacture
and construction, rather than on US conditions. For components
of ICL processes that in the near future could be
manufactured in China (essentially all components exceptthe gas turbine), as well as for engineering and construction
labor, significant cost reductions are likely to be
achievable relative to the estimates in Tables 9 and 10.
For example, a pre-feasibility study for construction of an
830,000 t/d facility that would make DME from coal in
Ningxia Province, China, indicates that installed capital
costs based on US Gulf Coast construction should be multiplied
by 0.75 to estimate capital costs for China [Lucas,
2002]. A study of IGCC costs indicates a 0.65 China ‘‘location’’
multiplier on total US overnight installed capital
costs for a plant built in China instead of in the USA
[Stoll and Todd, 1996]. For gasification projects, Shell
China typically applies a location factor of 0.60 to European
plant costs, on the basis of its own detailed evaluations
of local Chinese manufacturing and construction
costs [Wang, 2002].
6.1. Methanol
For plants located in the US, levelized factory-gate production
costs for methanol are shown in Table 11. The
coal input price for this analysis is $ 1/GJLHV ($ 23.5/t).
The methanol costs include credits for revenue from exported
electricity, assuming the sale price of the electricity
is equal to the cost for generating electricity from a new
IGCC plant (with no CO2 capture), for which emissions
per kWh of local pollutants such as SO2 and NOx would
be somewhat higher than emissions from the methanolelectricity
co-production facility (see Table 11, Note 5).
For a range of electricity prices, Figure 6 shows themethanol cost.
Without considering carbon capture, the least costly
methanol ($ 8.6/GJ) is produced in the RC case. To produce
methanol at this cost in the OT case requires an
electricity sale price of $ 0.045/kWh, which is slightly
higher than the baseline value used in Table 11 (Figure
6). The cost of methanol is insensitive to electricity price
in the RC case (since almost no exportable electricity is
produced).
When CO2 is captured at the plant and injected below
ground 100 km from the plant for long-term storage, the
cost of methanol increases relative to the lowest-cost case
with CO2 vented. At the reference electricity sale price,
the costs of methanol in the OT and RC cases with CO2
capture and storage are $ 11.3/GJ and $ 9.4/GJ, respectively.
When CO2 and H2S are co-captured and stored
jointly below ground, the cost of methanol is considerably
lower than when CO2 alone is captured and stored. In
fact, the methanol cost is only slightly higher than the
cost for the same plant configurations with CO2 vented.
This surprising result is due primarily to the considerably
simplified sulfur capture system (including elimination ofthe Claus and SCOT units) when H2S and CO2 are cocaptured
for underground storage.
The methanol costs shown in Table 11 can be compared
to the value of methanol as an octane-enhancing gasoline
additive and to the cost of methanol as a neat fuel (100 %
methanol) used in vehicles replacing petroleum-gasoline
vehicles.
When used as a gasoline additive, methanol will boost
fuel octane without significantly affecting engine efficiency.
Thus, the value of methanol as an additive can be
estimated from the difference in value between a regulargrade
gasoline and a mid-grade gasoline. Consider the
case of Beijing on April 11, 2003 (when the world crude
oil price was about $ 23/bbl = $ 169/t; 1 bbl or barrel =
about 136 kg). The average refinery-gate price (including
taxes) for regular-grade gasoline (90 octane) from 36 large
refineries in China on that date was 3172 RMB/t (or $
0.287/l) [Changchun, 2003]. The mid-grade (93 octane)
gasoline wholesale price that same day was 3408 RMB/t
($ 0.308/l). Since methanol has a blending octane of 120
[Wyman et al., 1993], a 10 % volume addition of methanol
to 90-octane gasoline would increase the octane of
the blended fuel to 93, and the added methanol would
have a value of $ 0.50/l, or $ 28/GJLHV
[5]. While the value
of methanol in this application would be far above the
estimated production cost, the market potential of this application
is limited by fuel blending limits.
Much larger potential markets are for methanol as a
neat fuel or as M85 (85 % MeOH, 15 % gasoline). The
value of methanol in a neat application will depend on
the efficiency of the methanol engine relative to a conventional
gasoline engine. An optimized spark-ignited
neat-methanol engine will be more energy-efficient than
a conventional gasoline spark-ignited engine primarily because
of higher compression ratios that can be achieved
with methanol. Wyman et al. [1993] indicate that a 20 %
engine efficiency advantage can be expected. Conservatively,
we consider a 15 % gain here, which gives methanol
production costs of $ 0.24--0.25/l gasoline-equivalent
for the cases with CO2 venting and $ 0.25--0.32/l gasoline-equivalent
for process configurations with CO2 capture
(Table 11). These values can be compared with
average Chinese refinery-gate gasoline prices mentioned
above ($ 0.29-0.31/l). As another comparison, the average
sale price of petroleum gasoline by US refiners to resellers[6]
in April 2003 was $ 0.26/l [EIA, 2003]. These comparisons
suggest that the methanol costs shown in Table
11 (even for some cases with CO2 capture and storage)
would be competitive with gasoline made from crude oil
when the world oil price is $ 23/bbl or more, particularly
considering that capital costs for methanol plants built in
China would be lower than those estimated in this analysis
(for reasons discussed at the start of Section 6).
6.2. Dimethyl ether
For plants located in the US, levelized factory-gate production
costs for DME are shown in Table 12 for the same
input parameter values as discussed above for methanol,
including electricity sold for $ 0.429/kWh. For other electricity
prices, Figure 7 shows DME costs as a function of
electricity sale price.
Without considering carbon capture cases, DME produced
in the OT case ($ 8.7/GJ) is less costly than in the
RC case ($ 9.5/GJ). The ‘‘break-even’’ electricity price for
the once-through versus recycle configurations is $
0.040/kWh, which is below the assumed reference electricity
sale price.
When CO2 is captured and stored, the calculated costs
of DME in the OT and RC cases are $ 10.0/GJ and $
10.4/GJ, respectively, using the reference electricity price.
When CO2 and H2S are co-captured/co-stored, the DME
cost in the OT case is 21 % lower than with capture of
CO2 alone, and the DME cost in the RC case is 8 % lower
than with CO2 capture alone.
Moreover, in the RC case with co-capture/co-storage,there is essentially no cost penalty for carbon capture relative
to the RC configuration with CO2 venting. In the OT
case with co-capture/co-storage, there is actually a cost
advantage compared to the OT case with CO2 vented. This
is unlike the case for methanol production (Table 11),
where the methanol cost in the OT case with CO2 co-capture/co-storage
is higher than for the OT case with CO2
vented. The advantageous relative costs for DME arise
from the fact that less CO2 is captured and stored in the
OT case for DME than for methanol (7.7 kgC/GJDME and
13.1 kgC/GJMeOH).
The above DME costs are also expressed in Table 12
on LPG-equivalent, diesel-equivalent, and gasolineequivalent
bases.
The LPG-equivalent costs, ranging from $ 399/t to $
437/t when CO2 is vented and from $ 380/t to $ 478/t
when CO2 is captured and stored, can be compared with
costs of LPG in China. Typical ex-refinery wholesale
prices of LPG at Chinese refineries were 2980-3370
RMB/t in April 2003 [Cui, 2003], or an average of US$
383/t. Wholesale prices of imported LPG at coastal terminals
in China were in this same range. Since the LPGequivalent
DME costs in Table 12 are based on a USA
plant location, it is likely that a plant located in Chinawould produce DME at costs that would be very competitive
with wholesale LPG prices.
The above LPG and DME costs can also be compared
with estimated health-related costs of indoor air pollution
arising from cooking with solid fuels, which the World
Health Organization ranks as the eighth most serious contributor
to the total burden of disease in ‘‘low-mortality
developing countries’’ (which includes China) [WHO,
2002]. The World Bank has estimated that the annual
health cost of indoor air pollution in rural China was between
$ 3.7 and $ 10.6 billion in 1995 [World Ba
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
6. ต้นทุนประเมินดุลมวลและพลังงานข้างต้นให้ข้อมูลพื้นฐานสำหรับการประเมินทุน ถ่านหิน และน้ำมันเชื้อเพลิงไม่ทำงาน และค่าบำรุงรักษาสำหรับแต่ละกระบวนการตั้งค่าคอนฟิก เมืองหลวงต้นทุน (ความแม่นยำ± 30% แสดงใน 2002 เรา $) ได้ประเมินสำหรับระบบเติบโตในเชิงพาณิชย์ (''โรงงาน '') โดยตั้งอุปกรณ์สำคัญสำหรับการผลิตและการก่อสร้างที่สหรัฐอเมริกาตำแหน่งหลักตามการอ้างอิงต้นทุนติดค้างคืนจากสองแหล่ง [มัวร์2003 Kreutz et al., 2003] (ตาราง 8)ต้นทุนเงินทุนอ้างอิงถูกปรับ (โดยใช้มาตราส่วนเลขชี้กำลังในตาราง 8) กับกำลังการผลิตที่สอดคล้องกับพืชที่อธิบายไว้ในตาราง 5 และ 7 สำหรับเมทานอล และDME ตามลำดับ เนื่องจากการผลิตน้ำมันเชื้อเพลิงเป็นหลักสนใจในการนำเสนอวิเคราะห์ เพื่อเปรียบเทียบต้นทุนระหว่างการตั้งค่าคอนฟิกกระบวนการแตกต่างกัน เราไปพัฒนาของเราประเมินทุนสำหรับกระบวนการตั้งค่าคอนฟิกผลิตเชื้อเพลิงเหลวในปริมาณที่เท่ากันกรณี เราใช้ผลผลิตเชื้อเพลิงกรณีรีไซเคิลเป็นระดับผลผลิตทั่วไป กำลังการผลิตโรงงานในตาราง 5 และ7 กรณี OT ได้ถูกปรับขึ้นตาม ที่เกิดโรงงานขนาด และการติดตั้งประเมินต้นทุนเงินทุนแสดงในตาราง 9 และ 10 เมทานอลและ DMEตามลำดับ หมายเหตุ 1 ในตารางเหล่านี้มีบางเพิ่มเติมรายละเอียดเกี่ยวกับต้นทุนของเราประเมินวิธีการต้นทุนเงินทุนข้างต้นสำหรับเมทานอลและ DME จะต่ำถ้าประเมิน โดยผลิตที่จีนและก่อ สร้าง มากกว่าเงื่อนไขที่สหรัฐฯ สำหรับส่วนประกอบICL ของ กระบวนการที่ในอนาคตอันใกล้อาจจะผลิต ในประเทศจีน (หลักทั้งหมดส่วนประกอบ exceptthe กังหันก๊าซ), และวิศวกรรมและก่อสร้างแรงงาน ลดต้นทุนที่สำคัญมีแนวโน้มที่จะทำได้เมื่อเทียบกับประเมินในตาราง 9 และ 10ตัวอย่าง โครงการก่อนศึกษาการก่อสร้างการสิ่งอำนวยความสะดวก 830,000 t/d ให้ DME จากถ่านหินในบ่งชี้ที่ติดตั้งจังหวัดนิงเซีย จีน เมืองหลวงควรคูณการก่อสร้างเราอ่าวชายฝั่งโดยการประเมินต้นทุนเงินทุนจีน [Lucas, 0.752002] ศึกษาต้นทุน IGCC บ่งชี้จีน 0.65 นิ้วตั้ง ''ตัวคูณบนรวมเราติดค้างคืนทุนต้นทุนโรงงานในจีนแทนในสหรัฐอเมริกา[Stoll กทอดด์ 1996] สำหรับโครงการที่มีการแปรสภาพเป็นแก๊ส เชลล์จีนใช้ตัวตั้งของ 0.60 ทั่วไปยุโรปต้นทุนโรงงาน เกณฑ์การประเมินตนเองรายละเอียดผลิตภายในจีนและก่อสร้างค่าใช้จ่าย [วัง 2002]6.1. เมทานอลสำหรับพืชที่อยู่ในสหรัฐอเมริกา levelized ประตูโรงงานผลิตสำหรับเมทานอลจะแสดงในตาราง 11 ที่ราคาถ่านหินนำเข้าวิเคราะห์นี้คือ $ 1/GJLHV ($ 23.5/t)ต้นทุนของเมทานอลรวมเครดิตสำหรับรายได้จากการส่งออกไฟฟ้า สมมติว่าราคาขายของไฟฟ้าเท่ากับต้นทุนสำหรับการสร้างไฟฟ้าจากใหม่พืช IGCC (กับไม่ CO2 จับ), สำหรับการปล่อยต่อสารมลพิษในท้องถิ่นเช่น SO2 และโรงแรมน็อกซ์ไม่ต้องจะค่อนข้างสูงกว่าการปล่อยจาก methanolelectricityผลิตร่วม (ดูตาราง 11 หมายเหตุ 5)ในช่วงราคาไฟฟ้า รูปที่ 6 แสดงต้นทุน themethanolไม่ มีการพิจารณาจับคาร์บอน ค่าใช้จ่ายน้อยที่สุดเมทานอล (GJ$ 8.6) ผลิตในกรณี RC ในการผลิตเมทานอลที่นี้ต้นทุนในกรณี OT ต้องการไฟฟ้าขายราคา $ 0.045/ไม่ ซึ่งเป็นเล็กน้อยสูงกว่าค่าพื้นฐานที่ใช้ในตาราง 11 (รูป6) . ต้นทุนของเมทานอลจะซ้อนราคาไฟฟ้าในกรณี RC (ตั้งแต่เกือบไฟฟ้าไม่สามารถส่งออกได้เป็นผลิต)เมื่อ CO2 ถูกจับที่โรงงาน และฉีดด้านล่างพื้นดิน 100 กิโลเมตรจากโรงงานสำหรับการจัดเก็บระยะยาว การต้นทุนของเมทานอลเพิ่มขึ้นเมื่อเทียบกับกรณีต้นทุนต่ำสุดมี CO2 vented ที่ราคาขายอ้างอิงไฟฟ้าต้นทุนของเมทานอลในกรณี OT และ RC กับ CO2รวบรวมข้อมูลและจัดเก็บได้ $ 11.3/GJ และ $ 9.4/GJ ตามลำดับเมื่อ CO2 ไข่เน่าร่วมรวบรวม และจัดเก็บร่วมใต้ดิน ต้นทุนของเมทานอลเป็นอย่างมากมากกว่าเมื่อ CO2 เพียงอย่างเดียวคือรวบรวม และเก็บไว้ ในความจริง เมทานอลต้นทุนจะสูงขึ้นเล็กน้อยกว่าต้นทุนค่าโรงงานเดียวกับ CO2 ventedผลลัพธ์นี้น่าแปลกใจที่มีหลักการมากภาษากำมะถันระบบ (รวมถึงกำจัดหน่วยคลอสฟรีและสกอตแลนด์) เมื่อ cocaptured ไข่เน่าและ CO2สำหรับการเก็บใต้ดินสามารถเปรียบเทียบต้นทุนของเมทานอลที่แสดงในตาราง 11ของเมทานอลเป็นตัวเบนซินเพิ่ม octaneสามารถ และต้นทุนของเมทานอลเป็นเชื้อเพลิงเรียบร้อย (100%เมทานอล) ที่ใช้ในรถยนต์แทนน้ำมันเบนซินยานพาหนะเมื่อใช้เป็นน้ำมันที่สามารถ เมทานอลจะเพิ่มเชื้อเพลิง octane ไม่มากส่งผลต่อประสิทธิภาพเครื่องยนต์ดังนั้น เมทานอลเป็นการบวกค่าได้ประเมินจากความแตกต่างในระหว่างการ regulargradeน้ำมันเบนซินและน้ำมันเกรดกลาง พิจารณากรณีของกรุงปักกิ่งในเดือน 11 เมษายน 2003 (เมื่อดิบโลกน้ำมันราคาถูกราคาประมาณ $ 23 สหรัฐฯ = $ 169/t มหาชน 1 หรือบาร์เรล =ประมาณ 136 กิโลกรัม) ราคาประตูโรงกลั่นเฉลี่ย (รวมถึงภาษี) สำหรับน้ำมันเกรดปกติ (90 octane) จาก 36 ขนาดใหญ่โรงกลั่นในประเทศจีนในวันนั้น 3172 RMB/t (หรือ$0.287/ลิตร) [ชุน 2003] ชั้นกลาง (93 octane)ราคาขายส่งน้ำมันวันเดียวถูกราคา 3408 RMB/t($ 0.308/ ลิตร) เนื่องจากเมทานอลมี octane ผสมของ 120[Wyman et al., 1993], เพิ่ม 10% ปริมาตรของเมทานอลการน้ำมัน 90 octane จะเพิ่ม octane ของเชื้อเพลิงผสมกับ 93 เมทานอลเพิ่มจะมีค่าเป็น $ 0.50/ l หรือ $ 28/GJLHV[5] ในขณะที่ค่าของเมทานอลในโปรแกรมประยุกต์นี้จะไกลเหนือต้นทุนการผลิตประมาณ ศักยภาพทางการตลาดของโปรแกรมประยุกต์นี้ถูกจำกัด ด้วยเชื้อเพลิงผสมจำกัดเป็นตลาดที่มีศักยภาพมากสำหรับเมทานอลเป็นการเชื้อเพลิงเรียบร้อย หรือ M85 (85% ทานอ เบนซิน 15%) ที่ค่าของเมทานอลในใบสมัครเรียบร้อยจะขึ้นอยู่กับประสิทธิภาพของเครื่องมือเมทานอลเทียบเป็นธรรมดาเครื่องยนต์เบนซิน การเพิ่มประสิทธิภาพประกายลุกเครื่องยนต์เพียบเมทานอลจะขึ้นประหยัดพลังงานกว่าเครื่องเบนซินธรรมดาประกายลุกมือหลักเพราะของอัตราส่วนการอัดสูงที่สามารถทำได้ด้วยเมทานอล Wyman et al. [1993] บ่งชี้ว่า 20%สามารถคาดหวังประโยชน์จากประสิทธิภาพของเครื่องยนต์ Conservativelyเราพิจารณา 15% จากกำไรที่นี่ ซึ่งเมทานอลต้นทุนการผลิตของ$ 0.24--0.25/l น้ำมันเทียบเท่าสำหรับกรณีที่ มี CO2 ระบายอากาศและ$ 0.25--0.32/l น้ำมันเทียบเท่าการตั้งค่าคอนฟิกกระบวนการด้วยการจับ CO2(ตาราง 11) ค่าเหล่านี้สามารถเปรียบเทียบกับราคาน้ำมันจีนเฉลี่ยประตูโรงกลั่นดังกล่าวข้างต้น ($ 0.29-0.31/l) เป็นการเปรียบเทียบอื่น ค่าเฉลี่ยราคาขายของน้ำมันปิโตรเลียมโดยสหรัฐอเมริกา refiners เพื่อผู้จำหน่าย [6]ในเดือน 2003 เมษายนถูก l $ 0.26 [EIA, 2003] เปรียบเหล่านี้แนะนำว่า ที่เมทานอลต้นทุนแสดงในตาราง11 (แม้ในบางกรณีที่มีการจับ CO2 และการจัดเก็บ)จะแข่งขันกับน้ำมันที่ผลิตจากน้ำมันดิบเมื่อราคาน้ำมันโลกคือ สหรัฐฯ $ 23 หรืออื่น ๆ โดยเฉพาะอย่างยิ่งพิจารณาให้ทุนค่าใช้จ่ายสำหรับพืชเมทานอลที่สร้างขึ้นในจีนจะต่ำกว่าที่ประเมินไว้ในการวิเคราะห์นี้(เหตุผลอธิบายที่จุดเริ่มต้นของส่วน 6)6.2. dimethyl อีเทอร์สำหรับพืชที่อยู่ในสหรัฐอเมริกา levelized ประตูโรงงานผลิตต้นทุนสำหรับ DME แสดงในตาราง 12 สำหรับเดียวกันป้อนค่าพารามิเตอร์กล่าวถึงข้างต้นสำหรับเมทานอลไฟฟ้ารวมทั้งขายสำหรับ $ 0.429/ไม่ ไฟฟ้าอื่น ๆราคา รูปที่ 7 แสดงต้นทุน DME เป็นฟังก์ชันของราคาขายไฟฟ้าโดยไม่พิจารณากรณีจับคาร์บอน DME ผลิตใน OT ใน กรณี (GJ$ 8.7) จะลดค่าใช้จ่ายมากกว่าในการRC กรณี (GJ$ 9.5) ราคาไฟฟ้า '' break-even''ครั้งเดียวผ่านและค่ารีไซเคิลคือ $0.040/ไม่ ซึ่งต่ำไฟฟ้าอ้างอิงสันนิษฐานราคาขายเมื่อรวบรวม และจัด เก็บ ต้นทุนที่คำนวณ CO2DME OT และ RC กรณีเป็น$และ $ 10.0/GJ10.4/GJ ตามลำดับ ใช้ไฟฟ้าราคาอ้างอิงเมื่อ CO2 และไข่เน่าบริษัท-captured/บริษัท จัดเก็บ การ DMEต้นทุนในกรณี OT เป็น 21% ต่ำกว่ากับจับCO2 เพียงอย่างเดียว DME ต้นทุนและในกรณีใน RC จะต่ำกว่า 8%กว่า ด้วย CO2 เก็บคนเดียวยิ่งไปกว่านั้น ในกรณี RC กับบริษัท-capture/บริษัท จัดเก็บ มีหลักไม่มีทุนกำหนดโทษจับคาร์บอนญาติการกำหนดค่า RC มีการระบายอากาศ CO2 ใน OTกรณี มีบริษัท-capture/บริษัท จัดเก็บ มีต้นทุนจริงเปรียบเทียบกับกรณี OT กับ CO2 vented นี้ไม่เหมือนกรณีผลิตเมทานอล (ตาราง 11),ซึ่งเมทานอลที่ต้นทุนในกรณี OT ด้วย CO2 บริษัท-capture/บริษัท-storageสูงกว่าสำหรับกรณี OT กับ CO2vented เกิดต้นทุนสัมพัทธ์ประโยชน์สำหรับ DMEจากการที่ CO2 น้อยจับ และเก็บไว้ในกรณี OT สำหรับ DME กว่าเมทานอล (7.7 kgC GJDME และ13.1 kgC/GJMeOH)ต้นทุน DME ข้างยังมีแสดงในตาราง 12ในแก๊ส LPG เทียบเท่า เทียบเท่ากับเครื่องยนต์ดีเซล และ gasolineequivalentฐานต้นทุน เทียบเท่ากับแก๊ส LPG ตั้งแต่ $ 399/t $437/t เมื่อ CO2 vented และ จาก $ 380/t ไป $ 478/tเมื่อ CO2 ถูกจับ และถูกเก็บไว้ สามารถเปรียบเทียบกับต้นทุนของแก๊ส LPG ในประเทศจีน อดีตโรงกลั่นทั่วไปขายส่งราคาแก๊ส LPG ที่ refineries จีนถูก 2980-3370RMB/t ในเดือน 2003 เมษายน [Cui, 2003], หรือโดยเฉลี่ยเหรียญสหรัฐฯราคาขายส่ง 383/ต. แก๊ส LPG นำเข้าที่เทอร์มินัลที่ชายฝั่งในประเทศจีนอยู่ในช่วงเดียวกันนี้ ตั้งแต่ LPGequivalentDME ต้นทุนในตาราง 12 ตามสหรัฐอเมริกาสถานที่ตั้ง โรงงานก็มีแนวโน้มว่า โรงงานที่ตั้งอยู่ใน Chinawould ผลิต DME ที่ต้นทุนที่จะมีการแข่งขันสูงมีแก๊ส LPG ราคาขายส่งยังสามารถเปรียบเทียบต้นทุนแอลพีจีและ DME ข้างต้นได้ด้วยประมาณการต้นทุนสุขภาพของมลพิษทางอากาศภายในอาคารเกิดจากการทำอาหารกับเชื้อเพลิงแข็ง ที่โลกองค์กรสุขภาพเป็นผู้ร้ายแรงมากที่สุดแปดอันดับการรวมภาระโรคใน "การตายต่ำประเทศกำลังพัฒนา '' (ซึ่งรวมถึงจีน) [ที่2002] นั้นธนาคารโลกได้ประเมินที่ปีมีต้นทุนสุขภาพของมลพิษทางอากาศภายในอาคารในชนบทจีนระหว่าง$ 3.7 และ 10.6 พันล้านเหรียญในปี 1995 [โลกบา
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
6 . ประมาณการค่าใช้จ่ายดุลมวลและพลังงาน
ข้างบนให้พื้นฐาน
ประมาณทุนถ่านหินและเชื้อเพลิงที่ไม่ผ่าตัดและการบำรุงรักษาค่าใช้จ่ายสำหรับแต่ละกระบวนการค่า
. ค่าใช้จ่ายทุน
( ± 30 % ความถูกต้อง แสดงออกใน 2002 เรา $ ) ประมาณ
สำหรับผู้ใหญ่ ( ''nth ในเชิงพาณิชย์พืช ' ' ) ด้วยระบบพื้นที่อุปกรณ์หลักสำหรับการผลิตการก่อสร้าง

และที่ประเทศสหรัฐอเมริกาเป็นหลักบนพื้นฐานของการอ้างอิง
ค้างคืน ค่าใช้จ่ายติดตั้งจากหนึ่งในสองแหล่ง [ มัวร์ ,
2003 ; ครูซ et al . , 2003 ) ( ตารางที่ 8 ) .
การอ้างอิงต้นทุนของทุนคือปรับขนาด ( โดยใช้มาตราส่วน
เลขยกกำลังในตารางที่ 8 ) ความสามารถที่สอดคล้องกับ
พืชที่อธิบายไว้ในโต๊ะ 5 7
DME และเมทานอล ตามลำดับ ตั้งแต่การผลิตเชื้อเพลิงเป็นหลัก
ความสนใจในการวิเคราะห์ต้นทุนเปรียบเทียบปัจจุบันเพื่อความสะดวกในกระบวนการต่าง ๆ ค่า

เรายังพัฒนาประมาณการค่าใช้จ่ายทุนของเราสำหรับการกำหนดค่ากระบวนการ
ผลิตจำนวนเดียวกันของเชื้อเพลิงเหลวใน
กรณี เราใช้เชื้อเพลิงของรีไซเคิลกรณี
ระดับส่งออกทั่วไป โรงงานการผลิตในตาราง 5
7 สำหรับ OT กรณีได้ถูกปรับขึ้นตาม
ผลขนาดโรงงานและติดตั้งทุนประมาณการ
จะแสดงในรูปตาราง 9 และ 10 สำหรับเมทานอลและ DME
ตามลำดับ หมายเหตุ 1 ในตารางเหล่านี้มีรายละเอียดบางอย่างเพิ่มเติมเกี่ยวกับการประมาณราคาวิธีการของเรา
.
ข้างต้นทุนค่าใช้จ่ายสำหรับเมทานอลและ DME จะ
จะลดลงถ้าประเมินบนพื้นฐานของ
ผลิตในจีน และก่อสร้าง มากกว่าเรา เงื่อนไข สำหรับส่วนประกอบ
กระบวนการสารว่า ในอนาคตอันใกล้อาจจะ
ผลิตในจีน ( หลักทุกองค์ประกอบยกเว้นกังหันก๊าซ ) , รวมทั้งวิศวกรรมและก่อสร้างลดต้นทุนแรงงาน

ที่สำคัญ มีแนวโน้มที่จะได้เมื่อเทียบกับประมาณการในตารางที่ 9 และ 10
ตัวอย่าง ก่อนการศึกษาความเป็นไปได้การก่อสร้างของ
t / D 830 สถานที่ที่จะให้จ่ายจากถ่านหินใน
จังหวัด Ningxia , จีน , แสดงว่าติดตั้งทุน
ค่าใช้จ่ายขึ้นอยู่กับเราอ่าวก่อสร้างควรจะคูณ 0.75
โดยประเมินต้นทุนทุนจีน [ ลูคัส
2002 ] การศึกษาต้นทุน igcc บ่งชี้ 0.65 ' จีน ' '
'location ตัวคูณทั้งหมดเราค้างคืนที่ติดตั้งทุน
ต้นทุนโรงงานที่สร้างขึ้นในประเทศจีนแทนในสหรัฐอเมริกา
[ Stoll และทอดด์ , 1996 ) สำหรับโครงการก๊าซ ,
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: