Gliese 229B, the first brown dwarf, discovered in 1995.
Limits on the upper mass of stars is thought to be somewhere between 150 and 200 solar masses based on theoretical modeling. Such stars are extremely rare and short-lived.
The greater the mass of a main sequence star, the greater its effective temperature. This, combined with the larger radius of higher mass main sequence stars accounts for their much greater luminosity. Remember, L ∝ T4 and L ∝ R2 so even a small increase in effective temperature will significantly increase luminosity.
Main-Sequence Lifespan
The main sequence is the stage where a star spends most of its existence. Relative to other stages in a star's "life" it is extremely long; our Sun took about 20 million years to form but will spend about 10 billion years (1 × 1010 years) as a main sequence star before evolving into a red giant. What determines the main sequence lifespan of a star?
Main sequence stars vary in mass. You may imagine that a more massive star has more fuel available so can spend more time on the main sequence fusing hydrogen to helium. You would be wrong - the opposite is true. More massive stars have a stronger gravitational force acting inwards so their core gets hotter. The higher temperatures mean that the nuclear reactions occur at a much greater rate in massive stars. They thus use up their fuel much quicker than lower mass stars. This is analogous to the situation with many chemical reactions, the higher the temperature the faster the reaction rate.
Lifespans for main sequence stars have a vast range. Whilst our Sun will spend 10 billion years on the main sequence, a high-mass, ten solar-mass (10MSun) star will only last 20 million years (2.0× 107 years) on the main sequence. A star with a only half the mass of Sun can spend 80 billion years on the main sequence. This is much longer than the age of the Universe which means that all the low-mass stars that have formed are still on the main sequence - they have not had time to evolve off it.