Fibonacci Identities as binomial sums II 2055
⎡ n ⎤2
2
n−i
= ⎣ i ⎦
i=0
⎡ n ⎤3
2
1 n − i
3 3 3 3
(iii) Fn+3 + 2Fn+2 − 3 (Fn + Fn+4) = ⎣ i ⎦
i=0
(iv) F 2 (F 2 − 4F F ) + F 2 (2F 2 − F 2)
n+2 n+2 n n+1 n n+1 n
1 2 2 2 2 4 4 2 n 2 4 4
= (Fn + Fn+1 + Fn+2) − (Fn + Fn+2) = 2 2Fn+1 − (−1) − (Fn + Fn+2)
2
⎡ n ⎤4
2
n−i
= ⎣ i ⎦
i=0
⎡ n ⎤5
2
5 2 5 n−i
(v) F + 5F F F (F F − F ) − F = ⎣ ⎦
n+2 n n+1 n+2 n n+1 n+2 n i
i=0
⎡ n ⎤6
2
2 n 3 2 2 2 6 6 n−i
(vi) 2[2Fn+1 − (−1) ] + 3Fn Fn+1Fn+2 − (Fn + Fn+2) = ⎣ i ⎦
i=0
(vii) 8F 2F 2 (F4 + F4 + 4F 2F 2 + 3F F F ) − (F8 + F8 )
n n+1 n n+1 n n+1 n n+1 2n+1 n n+2
⎡ n ⎤8
2
2 n 4 n−i
+2[2Fn+1 − (−1) ] = ⎣ i ⎦
i=0
Theorem 2.3.
⎡ ⎤
2
n+1
2
2 n+1−i
(i) F + F F = ⎣ ⎦
n+1 n n+3 i
i=0
⎡ ⎤
3
n+1
2
3 3 n+1−i
(ii) F + F + 3F F F = ⎣ ⎦
n n+1 n n+1 n+2 i
i=0
⎡ ⎤
5
n+1
2
5 5 2 n n+1−i
(iii) F + F + 5F F F [2F − (−1) ] = ⎣ ⎦
n n+1 n n+1 n+2 n+1 i
i=0
⎡ ⎤
7
n+1
2
7 7 2 n 2 n+1−i
(iv) F + F + 7F F F [2F − (−1) ] = ⎣ ⎦
n n+1 n n+1 n+2 n+1 i
i=0