. look for any orbital that has a symmetry that precludes
orbital interactions between fragments.
The -bonding in BF3 evolves from interactions involving
the fragment a1’ and e’ orbitals. Inspection of Figure 4.22
reveals that there are two F3-fragment LGOs with a1’ symmetry,
and three sets of e’ orbitals. The extent of mixing
between fragment orbitals of the same symmetry depends
on their relative energies, and is impossible to predict with
any degree of reliability. At the simplest level, we can
assume a -bonding picture that mimics that in BH3
(Figure 4.17). This picture involves LGO(1) in the formation
of the a1’ and a1’ MOs labelled in Figure 4.23, but leaves
LGO(4) as a non-bonding orbital. This model can be finetuned
by allowing some of the character of LGO(4) to be
mixed into the a1’ and a1’ MOs with BF bonding or antibonding
character. In order to ‘balance the books’, some
character from LGO(1) must then end up in the non-bonding
a1’ orbital. Similarly, we could allow contributions from the
fragment e’ MOs containing F 2px and 2py character to mix
into the e’ and e’ MOs with BF bonding or antibonding
character. In the simplest bonding picture, these MOs
contain F 2s character, and LGOs(6), (7), (10) and (11)
become non-bonding MOs in BF3. Assessing the extent of
orbital mixing is difficult, if not impossible, at a qualitative
level. It is best unravelled by computational programs
(many of which are available for use on a PC) which run
at a variety of levels of sophistication.
The a2’’ symmetry of the B 2pz orbital matches that of
LGO(5) and an in-phase orbital interaction gives rise to an
MO that has -bonding character delocalized over all three
BF interactions.
The only orbitals on the F3 fragment for which there is
no symmetry match on the B atom comprise the e’’ set.
These orbitals are carried across into BF3 as non-bonding
MOs.
The overall bonding picture for BF3 is summarized in
Figure 4.23. There are four bonding MOs, four antibonding
MOs and eight non-bonding MOs. The B atom provides
three electrons and each F atom, seven electrons, giving a
total of 12 electron pairs to occupy the 12 bonding and4.7 Molecular orbital theory: learning to
use the theory objectively
The aim of this section is not to establish complete bonding
pictures for molecules using MO theory, but rather to
develop an objective way of using the MO model to rationalize
particular features about a molecule. This often involves
drawing a partial MO diagram for the molecule in question.
In each example below, the reader should consider the
implications of this partial treatment: it can be dangerous
because bonding features, other than those upon which
one is focusing, are ignored. However, with care and practice,
the use of partial MO treatments is extremely valuable
as a method of understanding structural and chemical
properties in terms of bonding and we shall make use of it
later in the book.
-Bonding in CO2
The aim in this section is to develop anMOdescription of the
-bonding in CO2. Before beginning, we must consider what
valence orbitals are unused after -bonding. The CO2
molecule belongs to the D1h point group; the z axis is defined
to coincide with the C1 axis (structure 4.3). The -bonding
in an XH2 molecule was described in Figure 4.13. A similar
picture can be developed for the -bonding in CO2, with the
difference that the H 1s orbitals in XH2 are replaced by O 2s
and 2pz orbitals in CO2. Their overlap with the C 2s and
2pz orbitals leads to the formation of six MOs with g or
u symmetry, four occupied and two unoccupied.
non-bonding MOs shown in Figure 4.23. This is a simple picture
of the bonding which does not allow for orbital mixing.
However, it provides a description that includes partial
-character in each BF bond, and is therefore consistent
with the VB treatment that we discussed in Section 4.3.
. ค้นหาทุกออร์บิทัลที่มีสมมาตรที่ไม่สามารถการโต้ตอบระหว่างส่วนของวง-พันธะใน BF3 วิวัฒนาการจากการโต้ตอบที่เกี่ยวข้องกับส่วน a1' และ ' orbitals การตรวจสอบรูป 4.22แสดงให้เห็นว่า มีสองส่วน F3 LGOs กับ a1' สมมาตรและชุดที่สามของ e' orbitals ขอบเขตของการผสมระหว่างส่วน orbitals ของสมมาตรเดียวกันขึ้นกับบนพลังงานสัมพัทธ์ของพวกเขา และไม่สามารถที่จะทำนายด้วยระดับใด ๆ ของความน่าเชื่อถือ ในระดับที่ง่ายที่สุด เราสามารถสมมติ - พันธะภาพที่เลียนแบบที่ใน BH3(รูป 4.17) ภาพนี้เกี่ยวข้องกับ LGO(1) ในการก่อตัวของ a1' และ a1' MOs ฉลากรูป 4.23 แต่ใบLGO(4) เป็นออร์บิทัลไม่ใช่พันธะ รุ่นนี้สามารถ finetunedโดยให้บางส่วนของตัวละครของ LGO(4) จะผสมลงใน a1' และ a1' MOs B F พันธะหรือ antibondingอักขระ เพื่อให้ 'ยอดเงินหนังสือ' บางตัวละครจาก LGO(1) แล้วต้องจบลงในที่ไม่ใช่พันธะa1' ของวงโคจร ในทำนองเดียวกัน เราให้เงินสมทบfragment e' F 2px และ 2py อักขระที่ประกอบด้วย MOs ในการผสมเข้าอี ' และ ' MOs B F พันธะหรือ antibondingอักขระ ในรูปพันธะที่ง่าย MOs เหล่านี้ประกอบด้วยตัวอักษร F 2s, LGOs(6), (7), (10) และ (11)กลายเป็นไม่ใช่พันธะ MOs ใน BF3 ขอบเขตของการประเมินการผสมวงเป็นเรื่องยาก ถ้าไม่ไปไม่ได้ ที่มีคุณภาพระดับ มันดีที่สุดคือ unravelled โดยโปรแกรมคำนวณ(many of which are available for use on a PC) which runat a variety of levels of sophistication.The a2’’ symmetry of the B 2pz orbital matches that ofLGO(5) and an in-phase orbital interaction gives rise to anMO that has -bonding character delocalized over all threeBF interactions.The only orbitals on the F3 fragment for which there isno symmetry match on the B atom comprise the e’’ set.These orbitals are carried across into BF3 as non-bondingMOs.The overall bonding picture for BF3 is summarized inFigure 4.23. There are four bonding MOs, four antibondingMOs and eight non-bonding MOs. The B atom providesthree electrons and each F atom, seven electrons, giving atotal of 12 electron pairs to occupy the 12 bonding and4.7 Molecular orbital theory: learning touse the theory objectivelyThe aim of this section is not to establish complete bondingpictures for molecules using MO theory, but rather todevelop an objective way of using the MO model to rationalizeparticular features about a molecule. This often involvesdrawing a partial MO diagram for the molecule in question.In each example below, the reader should consider theimplications of this partial treatment: it can be dangerousbecause bonding features, other than those upon whichone is focusing, are ignored. However, with care and practice,the use of partial MO treatments is extremely valuableas a method of understanding structural and chemicalproperties in terms of bonding and we shall make use of itlater in the book.-Bonding in CO2The aim in this section is to develop anMOdescription of the-bonding in CO2. Before beginning, we must consider whatvalence orbitals are unused after -bonding. The CO2molecule belongs to the D1h point group; the z axis is definedto coincide with the C1 axis (structure 4.3). The -bondingin an XH2 molecule was described in Figure 4.13. A similarpicture can be developed for the -bonding in CO2, with thedifference that the H 1s orbitals in XH2 are replaced by O 2sand 2pz orbitals in CO2. Their overlap with the C 2s and2pz orbitals leads to the formation of six MOs with g oru symmetry, four occupied and two unoccupied.non-bonding MOs shown in Figure 4.23. This is a simple pictureof the bonding which does not allow for orbital mixing.However, it provides a description that includes partial-character in each BF bond, and is therefore consistentwith the VB treatment that we discussed in Section 4.3.
การแปล กรุณารอสักครู่..
