Global temperature rise is suggested to be greater and more rapid in polar regions. There has been a clear temperature rise of 0.056 °C y−1 in the Antarctic Peninsula and this has led to changes in higher plant extent and range. In the more extreme environments of the main continent the vegetation is scattered and composed of lichens and mosses. There is interest in the possible effects of global climate change on these communities acting through changes in temperature and precipitation. Lichens have been extensively used to date the substrates on which they are growing using the techniques of lichenometry. The slow growth and longevity of lichens particularly suites them for this use. We present evidence that there appears to be a substantial (two orders of magnitude) cline in lichen growth rate from the warmer, wetter and more productive Peninsula to the cold Dry Valleys at 77°S latitude. The differences in growth rate reflect the precipitation and temperature regimes at the different sites. The large range in growth rates coupled with the simplicity of measuring lichen growth using modern techniques suggests that this could be an excellent tool for the detection of climate change in continental Antarctica.