Skip to Main ContentHome Texas State Historical Association (TSHA)
A Digital Gateway to Texas History
menu iconsearch icon
sidebar menu icon
AEROSPACE MEDICINE, LYNDON B. JOHNSON SPACE CENTER
AEROSPACE MEDICINE, LYNDON B. JOHNSON SPACE CENTER. As the center of the national space program, the Lyndon B. Johnson Space Center has become the focus of research in aerospace medicine.
NASA and aerospace medicine. The successful launch of Earth's first artificial satellite by the Soviet Union on October 4, 1957, was the initial step in a series of events that made the state of Texas the home of the United States manned space-exploration program. Sputnik I provided the impetus for President Dwight D. Eisenhower to propose and Congress to approve the National Aeronautics and Space Act, which was signed into law on July 29, 1958. To implement the act, Eisenhower selected the National Advisory Committee for Aeronautics. The NACA was soon renamed the National Aeronautics and Space Administration, and T. Keith Glennan and Hugh Dryden were named administrator and deputy administrator, respectively. Although plans for manned space flight were well under way before the establishment of NASA, one of NASA's highest priorities was to consolidate the work done by the NACA laboratories and the military services and focus on the goal of launching a person into orbital flight and returning that person safely to Earth. To accomplish this goal, Glennan established a Space Task Group on November 5, 1958, at Langley Research Center under the direction of Robert R. Gilruth, who had been at Langley since graduating from the University of Minnesota in 1936. During the years before NASA, Glennan assembled an extremely competent and vigorous group of engineers. Included in it were many who later became highly influential, both in technical and management roles, in all NASA's manned space flight programs. Among these were Maxime A. Faget, Christopher C. Kraft, Jr., Paul E. Purser, Charles W. Mathews, Robert O. Piland, and Charles J. Donlan. The technology for manned space flight came from this dedicated and ingenious cadre of engineers, but the aerospace medical expertise resided in the military service and in universities supported by the military. The United States Air Force, in particular, held the required expertise in the physiological aspects of space flight.
After World War II, 130 German scientists and engineers, led by Werner von Braun, were brought to the United States and stationed at Fort Bliss in El Paso, Texas, to continue their work on rockets. The United States Air Force also enlisted the service of a number of German physicians, physiologists, and psychologists who had been the nucleus of the Luftwaffe medical-research program in support of high-altitude and high-speed airplane flight. Six of these were assigned as research physicians to the Air Force School of Aviation Medicine at Randolph Air Force Base in San Antonio. Although they concentrated primarily on aviation medicine, the natural extension of their high-altitude research programs drew their interests to space.
In 1948, nine years before Sputnik I, Col. Harry G. Armstrong, commandant of the school, convened a panel to discuss "Aeromedical Problems of Space Travel." The panel discussion included presentations by Hubertus Strughold and Heinz Haber, two of the German physicians, and commentary from six noted university and military scientists. At this panel, Strughold coined the term "space medicine." Later, through the excellence of his work, he was nicknamed "the father of space medicine." The foundation of aerospace medicine in support of manned space flight had been established. As research continued, concern grew throughout this medical community that weightless flight would gravely affect the physiological systems of those who flew. German physicians Heinz Haber and Otto Gauer, who supported the air force aviation-medicine program, noted that weightlessness could seriously affect the "autonomic nervous functions and ultimately produce a very severe sensation of succumbence associated with an absolute incapacity to act." This concern for physiological and psychological dangers associated with space flight resulted in the establishment of an operational aerospace medical group within the Space Task Group to address the problem. The first members of the medical group were two air force physicians, Lt. Col. Stanley C. White and Maj. William S. Augerson, and one navy psychologist, Lt. Robert Voas; their primary interest was flight-crew selection and training. To provide contact between the Space Task Group medical group, NASA Headquarters, and external medical and life-sciences groups, the Life Sciences Advisory Committee was established, with W. Randolph Lovelace II as chairman. The committee played a role in the selection of the Mercury astronauts.
The Manned Spacecraft Center and Project Mercury. The accomplishments of the Space Task Group over the next three years were phenomenal. The Redstone and Atlas rockets were selected and, after extensive testing, man-rated for suborbital and orbital missions, respectively. The Mercury capsule was designed, tested, and flown. Life-support systems were developed to provide a breathable atmosphere at regulated pressure with temperature and humidity control. Food and water systems were developed. A couch was designed to protect the astronaut from the forces of high acceleration launch and landing.
Astronaut-selection planning began seriously in 1958. On April 9, 1959, at a Washington news conference, Glennan introduced the seven military test pilots selected for space flight. They were selected from thirty-two candidates who had passed the initial screening and evaluation process, had been through a rigorous physical examination at the Lovelace Clinic in New Mexico, and had been through extensive mental and physical environmental tests at the Wright Air Development Center in Dayton, Ohio. America's first astronauts were Lt. Cdr. Alan B. Shepard, Lt. Cdr. Walter M. Schirra, Jr., and Lt. M. Scott Carpenter from the navy; Capt. Donald K. Slayton, Capt. L. Gordon Cooper, and Capt. Virgil I. Grissom from the air force; and Lt. Col. John H. Glenn from the marines. Doctors Stanley White and Robert Voas were members of the first astronaut-selection committee, which was chaired by Charles Donlan, assistant project manager of the Space Task Group. Two years later, on May 5, 1961, Alan Shepard became the first American in space when the Redstone rocket boosted his Mercury space capsule into suborbital flight for five minutes and sixteen seconds of weightlessness. Shortly after Shepard's flight, President John F. Kennedy, in a special message presented to Congress on May 25, 1961, made a statement that profoundly affected America's space program. He said, "I believe this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth. No single space project in this period will be more impressive to mankind, or more important for the long-range exploration of space; and none will be so difficult or expensive to accomplish."
President Kennedy's statement gave the Space Task Group both a future and a challenge. The STG had grown from thirty-three persons at its inception to 794 by mid-1961. A new facility dedicated to manned space flight was necessary to accomplish the challenge. Kennedy approved the new facility in principle as an adjunct to his emphasis on an enlarged space program. Congress, sensing the interest of the American people in responding to the earlier successes of the Soviet Union, approved the budget, and a site-survey team was established in August 1961. On September 19, 1961, James E. Webb, the new NASA administrator, announced that a new NASA center named the Manned Spacecraft Center would be built near Houston, Texas, on 1,000 acres of land transferred to the government by Rice University and an adjacent plot that the government purchased. The site was in Harris County near Clear Lake and was connected through Galveston Bay to the Gulf of Mexico. There was criticism that Vice President Lyndon B. Johnson and Houstonian Albert Thomas,qqv chairman of the Independent Offices Subcommittee of the House Appropriations Committee, had exercised undue political influence in the selection of Houston as the site of MSC. The charges were denied by NASA. Gilruth, now officially director of MSC, moved quickly to lease facilities in the nearby Houston area, while plans were completed for the construction of fourteen buildings at an estimated cost of $60 million to accommodate more than 3,000 persons. During the next year, as construction began on a permanent facility, NASA successfully launched three orbital missions. On May 15, 1963, Gordon Cooper completed twenty-two orbits of Earth in the final Mercury mission.
Aerospace medicine and manned space flight. Project Mercury provided confidence in the ability of the astronaut to perform satisfactorily in the weightless environment and in the capability of the spacecraft environmental-control system to support life in space. In addition, many worries about psychological and physiological dangers that could be associated with space and the weightless environment were dispelled. Several physiological problems did, however, emerge from the Mercury project. Dehydration was observed in every crew member, accompanied by decreased water consumption and increased urine output. Some degradation of performance capability was evident and was thought to be related to fatigue associated with sleep disturbances. Two astronauts experienced orthostatic hypotension after flight; soon after leaving the spacecraft their pulse rate increased and their blood pressure decreased as their cardiovascular systems were challenged by Earth's gravitational forces following their exposure to weightlessness. Postflight clinical evaluatio
ข้ามไปที่รัฐเท็กซัส ContentHome หลักประวัติศาสตร์สมาคม (TSHA)ดิจิตอลเกตเวย์ในเท็กซัสประวัติเมนูไอคอน iconsearchไอคอนเมนู sidebarอุตสาหกรรมยา ศูนย์อวกาศจอห์นสันเกิด LYNDONอุตสาหกรรมยา ศูนย์อวกาศจอห์นสันเกิด LYNDON เป็นศูนย์กลางของโปรแกรมอวกาศแห่งชาติ Lyndon B. Johnson Space Center ได้กลายเป็น จุดเน้นของการวิจัยในอุตสาหกรรมยานาซ่าและอุตสาหกรรมยา เปิดตัวดินประดิษฐ์ดาวเทียมแรกโดยสหภาพโซเวียตในเดือน 4 ตุลาคม 1957 ประสบความสำเร็จเป็นขั้นตอนแรกในชุดของเหตุการณ์ที่ทำบ้านของโปรแกรม manned สำรวจอวกาศของสหรัฐอเมริการัฐเท็กซัส Sputnik ฉันมีแรงผลักดันสำหรับประธานไวท์ D. Eisenhower เสนอสภาเพื่ออนุมัติหลงชาติและพื้นที่พระราชบัญญัติ ที่ถูกเซ็นชื่อเป็นกฎหมายในวันที่ 29 กรกฎาคม 1958 การใช้การกระทำ Eisenhower เลือกคณะกรรมการปรึกษาแห่งชาติสำหรับหลง NACA เร็ว ๆ นี้ถูกเปลี่ยนชื่อหลงชาติและจัดการพื้นที่ และต. Keith Glennan และฮิวจ์ Dryden ได้ชื่อผู้ดูแลระบบและผู้ดูแลรอง ตามลำดับ แม้ว่าแผนการบิน manned ได้ดีเดินทางก่อนการก่อตั้งของ NASA หนึ่งระดับความสำคัญสูงสุดของ NASA คือการรวมงานที่ทำ โดยห้องปฏิบัติการ NACA และบริการทหาร และความในเป้าหมายของการเปิดตัวผู้ลงในเที่ยวบินโคจร และความที่คนปลอดภัยโลก เพื่อให้บรรลุเป้าหมายนี้ Glennan สร้าง กลุ่มงานพื้นที่บน 5 พฤศจิกายน 1958 ศูนย์วิจัยลแลงเกลย์ภายใต้ทิศทางของโรเบิร์ต R. Gilruth ที่ได้รับที่ลแลงเกลย์ตั้งแต่จบการศึกษาจากมหาวิทยาลัยมินนิโซตาในค.ศ. 1936 ในช่วงปีก่อนนาซ่า Glennan รวบรวมกลุ่มมีอำนาจมาก และคึกคักของวิศวกร ทั้งในทางเทคนิคและการจัดการบทบาท NASA ทั้งหมดรวมอยู่ในนั้นมีหลายคนในภายหลังก็มีอิทธิพลสูง manned โปรแกรมบิน ในหมู่เหล่านี้ถูก Maxime A. Faget คริสโตเฟอร์ C. คราฟท์ จูเนียร์ Paul E. Purser ชาร์ลส์แม ทิวส์ W. โรเบิร์ตโอ Piland และ Donlan ชาร์ลส์เจ เทคโนโลยีสำหรับ manned บินมาจากนี้คาเดรทุ่มเท และแยบยลของวิศวกร แต่ความเชี่ยวชาญทางการแพทย์ที่บินอยู่ ในการรับราชการทหาร และ ในมหาวิทยาลัยที่ได้รับการสนับสนุน โดยทหาร กองทัพอากาศสหรัฐอเมริกา โดยเฉพาะ จัดต้องใช้ความเชี่ยวชาญในด้านสรีรวิทยาของการบินAfter World War II, 130 German scientists and engineers, led by Werner von Braun, were brought to the United States and stationed at Fort Bliss in El Paso, Texas, to continue their work on rockets. The United States Air Force also enlisted the service of a number of German physicians, physiologists, and psychologists who had been the nucleus of the Luftwaffe medical-research program in support of high-altitude and high-speed airplane flight. Six of these were assigned as research physicians to the Air Force School of Aviation Medicine at Randolph Air Force Base in San Antonio. Although they concentrated primarily on aviation medicine, the natural extension of their high-altitude research programs drew their interests to space.In 1948, nine years before Sputnik I, Col. Harry G. Armstrong, commandant of the school, convened a panel to discuss "Aeromedical Problems of Space Travel." The panel discussion included presentations by Hubertus Strughold and Heinz Haber, two of the German physicians, and commentary from six noted university and military scientists. At this panel, Strughold coined the term "space medicine." Later, through the excellence of his work, he was nicknamed "the father of space medicine." The foundation of aerospace medicine in support of manned space flight had been established. As research continued, concern grew throughout this medical community that weightless flight would gravely affect the physiological systems of those who flew. German physicians Heinz Haber and Otto Gauer, who supported the air force aviation-medicine program, noted that weightlessness could seriously affect the "autonomic nervous functions and ultimately produce a very severe sensation of succumbence associated with an absolute incapacity to act." This concern for physiological and psychological dangers associated with space flight resulted in the establishment of an operational aerospace medical group within the Space Task Group to address the problem. The first members of the medical group were two air force physicians, Lt. Col. Stanley C. White and Maj. William S. Augerson, and one navy psychologist, Lt. Robert Voas; their primary interest was flight-crew selection and training. To provide contact between the Space Task Group medical group, NASA Headquarters, and external medical and life-sciences groups, the Life Sciences Advisory Committee was established, with W. Randolph Lovelace II as chairman. The committee played a role in the selection of the Mercury astronauts.The Manned Spacecraft Center and Project Mercury. The accomplishments of the Space Task Group over the next three years were phenomenal. The Redstone and Atlas rockets were selected and, after extensive testing, man-rated for suborbital and orbital missions, respectively. The Mercury capsule was designed, tested, and flown. Life-support systems were developed to provide a breathable atmosphere at regulated pressure with temperature and humidity control. Food and water systems were developed. A couch was designed to protect the astronaut from the forces of high acceleration launch and landing.Astronaut-selection planning began seriously in 1958. On April 9, 1959, at a Washington news conference, Glennan introduced the seven military test pilots selected for space flight. They were selected from thirty-two candidates who had passed the initial screening and evaluation process, had been through a rigorous physical examination at the Lovelace Clinic in New Mexico, and had been through extensive mental and physical environmental tests at the Wright Air Development Center in Dayton, Ohio. America's first astronauts were Lt. Cdr. Alan B. Shepard, Lt. Cdr. Walter M. Schirra, Jr., and Lt. M. Scott Carpenter from the navy; Capt. Donald K. Slayton, Capt. L. Gordon Cooper, and Capt. Virgil I. Grissom from the air force; and Lt. Col. John H. Glenn from the marines. Doctors Stanley White and Robert Voas were members of the first astronaut-selection committee, which was chaired by Charles Donlan, assistant project manager of the Space Task Group. Two years later, on May 5, 1961, Alan Shepard became the first American in space when the Redstone rocket boosted his Mercury space capsule into suborbital flight for five minutes and sixteen seconds of weightlessness. Shortly after Shepard's flight, President John F. Kennedy, in a special message presented to Congress on May 25, 1961, made a statement that profoundly affected America's space program. He said, "I believe this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth. No single space project in this period will be more impressive to mankind, or more important for the long-range exploration of space; and none will be so difficult or expensive to accomplish."President Kennedy's statement gave the Space Task Group both a future and a challenge. The STG had grown from thirty-three persons at its inception to 794 by mid-1961. A new facility dedicated to manned space flight was necessary to accomplish the challenge. Kennedy approved the new facility in principle as an adjunct to his emphasis on an enlarged space program. Congress, sensing the interest of the American people in responding to the earlier successes of the Soviet Union, approved the budget, and a site-survey team was established in August 1961. On September 19, 1961, James E. Webb, the new NASA administrator, announced that a new NASA center named the Manned Spacecraft Center would be built near Houston, Texas, on 1,000 acres of land transferred to the government by Rice University and an adjacent plot that the government purchased. The site was in Harris County near Clear Lake and was connected through Galveston Bay to the Gulf of Mexico. There was criticism that Vice President Lyndon B. Johnson and Houstonian Albert Thomas,qqv chairman of the Independent Offices Subcommittee of the House Appropriations Committee, had exercised undue political influence in the selection of Houston as the site of MSC. The charges were denied by NASA. Gilruth, now officially director of MSC, moved quickly to lease facilities in the nearby Houston area, while plans were completed for the construction of fourteen buildings at an estimated cost of $60 million to accommodate more than 3,000 persons. During the next year, as construction began on a permanent facility, NASA successfully launched three orbital missions. On May 15, 1963, Gordon Cooper completed twenty-two orbits of Earth in the final Mercury mission.
Aerospace medicine and manned space flight. Project Mercury provided confidence in the ability of the astronaut to perform satisfactorily in the weightless environment and in the capability of the spacecraft environmental-control system to support life in space. In addition, many worries about psychological and physiological dangers that could be associated with space and the weightless environment were dispelled. Several physiological problems did, however, emerge from the Mercury project. Dehydration was observed in every crew member, accompanied by decreased water consumption and increased urine output. Some degradation of performance capability was evident and was thought to be related to fatigue associated with sleep disturbances. Two astronauts experienced orthostatic hypotension after flight; soon after leaving the spacecraft their pulse rate increased and their blood pressure decreased as their cardiovascular systems were challenged by Earth's gravitational forces following their exposure to weightlessness. Postflight clinical evaluatio
การแปล กรุณารอสักครู่..
