Given a time series such as daily stock market prices or yearly temperatures people often want to create a smoother series.[3] This helps to show underlying trends or perhaps periodic behavior. An easy way to do this is to choose a number n and create a new series by taking the arithmetic mean of the first n values, then moving forward one place and so on. This is the simplest form of moving average. More complicated forms involve using a weighted average. The weighting can be used to enhance or suppress various periodic behavior and there is very extensive analysis of what weightings to use in the literature on filtering. In digital signal processing the term “moving average” is used even when the sum of the weights is not 1.0 (so the output series is a scaled version of the averages).[4] The reason for this is that the analyst is usually interested only in the trend or the periodic behavior. A further generalization is an “autoregressive moving average”. In this case the average also includes some of the recently calculated outputs. This allows samples from further back in the history to affect the current output.