10. Algebraic closure09GP The “fundamental theorem of algebra” states  การแปล - 10. Algebraic closure09GP The “fundamental theorem of algebra” states  ไทย วิธีการพูด

10. Algebraic closure09GP The “fund

10. Algebraic closure
09GP The “fundamental theorem of algebra” states that C is algebraically closed. A
beautiful proof of this result uses Liouville’s theorem in complex analysis, we shall
give another proof (see Lemma 22.1).
09GQ A field Definition 10.1. F is said to be algebraically closed if every algebraic
extension E/F is trivial, i.e., E = F .
This may not be the definition in every text. Here is the lemma comparing it with
the other one.
09GR Lemma 10.2. Let F be a field. The following are equivalent
(1) F is algebraically closed,
(2) every irreducible polynomial over F is linear,
(3) every nonconstant polynomial over F has a root,
(4) every nonconstant polynomial over F is a product of linear factors.
Proof. If F is algebraically closed, then every irreducible polynomial is linear.
Namely, if there exists an irreducible polynomial of degree > 1, then this generates a
nontrivial finite (hence algebraic) field extension, see Example 7.6. Thus (1) implies
(2). If every irreducible polynomial is linear, then every irreducible polynomial has
a root, whence every nonconstant polynomial has a root. Thus (2) implies (3).
Assume every nonconstant polynomial has a root. Let P ∈ F [x] be nonconstant.
If P (α) = 0 with α ∈ F , then we see that P = (x − α)Q for some Q ∈ F [x] (by
division with remainder). Thus we can argue by induction on the degree that any
nonconstant polynomial can be written as a product c Q(x − αi).
Finally, suppose that every nonconstant polynomial over F is a product of linear
factors. Let E/F be an algebraic extension. Then all the simple subextensions
F (α)/F of E are necessarily trivial (because the only irreducible polynomials are
linear by assumption). Thus E = F . We see that (4) implies (1) and we are
done.
Now we want to define a “universal” algebraic extension of a field. Actually, we
should be careful: the algebraic closure is not a universal object. That is, the
algebraic closure is not unique up to unique isomorphism: it is only unique up to
isomorphism. But still, it will be very handy, if not functorial.
09GS Let Definition 10.3. F be a field. We say F is algebraically closed if every
algebraic extension E/F is trivial, i.e., E = F . An algebraic closure of F is a field
F containing F such that:
(1) F is algebraic over F .
(2) F is algebraically closed.
If F is algebraically closed, then F is its own algebraic closure. We now prove the
basic existence result.
09GT Theorem 10.4. Every field has an algebraic closure.
The proof will mostly be a red herring to the rest of the chapter. However, we will
want to know that it is possible to embed a field inside an algebraically closed field,
and we will often assume it done.
FIELDS 12
Proof. Let F be a field. By Lemma 8.9 the cardinality of an algebraic extension of
F is bounded by max(ℵ0, |F|). Choose a set S containing F with |S| > max(ℵ0, |F|).
Let’s consider triples (E, σE, µE) where
(1) E is a set with F ⊂ E ⊂ S, and
(2) σE : E×E → E and µE : E×E → E are maps of sets such that (E, σE, µE)
defines the structure of a field extension of F (in particular σE(a, b) = a+F b
for a, b ∈ F and similarly for µE), and
(3) F ⊂ E is an algebraic field extension.
The collection of all triples (E, σE, µE) forms a set I. For i ∈ I we will denote
Ei = (Ei, σi, µi) the corresponding field extension to F. We define a partial ordering
on I by declaring i ≤ i0 if and only if Ei ⊂ Ei0 (this makes sense as Ei and Ei0 are
subsets of the same set S) and we have σi = σi0|Ei×Ei and µi = µi0|Ei×Ei, in other
words, Ei0 is a field extension of Ei.
Let T ⊂ I be a totally ordered subset. Then it is clear that ET = Si∈T Ei with
induced maps σT = S σi and µT = S µi is another element of I. In other words
every totally order subset of I has a upper bound in I. By Zorn’s lemma there
exists a maximal element (E, σE, µE) in I. We claim that E is an algebraic closure.
Since by definition of I the extension E/F is algebraic, it suffices to show that E
is algebraically closed.
To see this we argue by contradiction. Namely, suppose that E is not algebraically
closed. Then there exists an irreducible polynomial P over E of degree > 1, see
Lemma 10.2. By Lemma 8.5 we obtain a nontrivial finite extension E0 = E[x]/(P).
Observe that E0/F is algebraic by Lemma 8.8. Thus the cardinality of E0 is ≤
max(ℵ0, |F|). By elementary set theory we can extend the given injection E ⊂ S to
an injection E0 → S. In other words, we may think of E0 as an element of our set
I contradicting the maximality of E. This contradiction completes the proof.
09GU Lemma 10.5. Let F be a field. Let F be an algebraic closure of F. Let M/F be
an algebraic extension. Then there is a morphism of F-extensions M → F.
Proof. Consider the set I of pairs (E, ϕ) where F ⊂ E ⊂ M is a subextension and
ϕ : E → F is a morphism of F-extensions. We partially order the set I by declaring
(E, ϕ) ≤ (E0, ϕ0) if and only if E ⊂ E0 and ϕ0|E = ϕ. If T = {(Et, ϕt)} ⊂ I is a
totally ordered subset, then S ϕt : S Et → F is an element of I. Thus every totally
ordered subset of I has an upper bound. By Zorn’s lemma there exists a maximal
element (E, ϕ) in I. We claim that E = M, which will finish the proof. If not,
then pick α ∈ M, α 6∈ E. The α is algebraic over E, see Lemma 8.4. Let P be the
minimal polynomial of α over E. Let P ϕ be the image of P by ϕ in F[x]. Since
F is algebraically closed there is a root β of P ϕ in F. Then we can extend ϕ to
ϕ0 : E(α) = E[x]/(P) → F by mapping x to β. This contradicts the maximality of
(E, ϕ) as desired.
09GV Lemma 10.6. Any two algebraic closures of a field are isomorphic.
Proof. Let F be a field. If M and F are algebraic closures of F, then there exists
a morphism of F-extensions ϕ : M → F by Lemma 10.5. Now the image ϕ(M) is
algebraically closed. On the other hand, the extension ϕ(M) ⊂ F is algebraic by
Lemma 8.4. Thus ϕ(M) = F.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
10. ปิดพีชคณิต09GP "ทฤษฎีบทมูลฐานของพีชคณิต" ระบุว่า C ไว้ algebraically ปิด Aสวยพิสูจน์ผลนี้ใช้ทฤษฎีบทของ Liouville ในการวิเคราะห์ที่ซับซ้อน เราจะให้หลักฐานอื่น (ดู 22.1 จับมือ)09GQ A ฟิลด์นิยาม 10.1 F กล่าวไว้ algebraically ปิดถ้าทุกพีชคณิตนามสกุล E/F เป็นเรื่องขี้ปะติ๋ว เช่น E = Fนี้ไม่ได้กำหนดในข้อความทุก นี่คือ การเปรียบเทียบด้วยการจับมือคนอื่น ๆจับมือ 09GR 10.2 ให้ F เป็นเขต ต่อไปนี้จะเทียบเท่า(1) F ไว้ algebraically ปิด(2) พหุนามทุกอย่างต่ำกว่า F เป็นเส้น(3) nonconstant ทุกโพลิโนเมียมากกว่า F มีราก(4) nonconstant ทุกโพลิโนเมียมากกว่า F เป็นผลิตภัณฑ์ของปัจจัยเชิงหลักฐานการ ถ้า F ไว้ algebraically ปิด พหุนามทุกอย่างต่ำเป็นเส้นตรงคือ ถ้ามีพหุนามเป็นอย่างต่ำปริญญา > 1 แล้วมีสร้างเป็นnontrivial จำกัด (พีชคณิตดัง) ฟิลด์นามสกุล ดูตัวอย่าง 7.6 ดังนั้น (1) หมายถึง(2) . พหุนามทุกอย่างต่ำเป็นเส้นตรง ถ้าพหุนามทุกอย่างต่ำได้ราก ไหนทุก nonconstant ที่พหุนามมีราก ดังนั้น (2) (3) หมายถึงการสมมติว่า ทุก nonconstant ที่พหุนามมีราก ให้ P ∈ F [x] nonconstant ได้ถ้า P (ด้วยกองทัพ) = 0 พร้อมด้วยกองทัพ∈ F แล้วเราเห็นว่า P = (x −ด้วยกองทัพ) Q สำหรับบาง Q ∈ F [x] (หาร ด้วยส่วนที่เหลือ) ดังนั้น เราสามารถโต้แย้ง โดยการเหนี่ยวนำกับระดับให้พหุนาม nonconstant สามารถเขียนเป็น c ผลิตภัณฑ์ Q (x − αi)Finally, suppose that every nonconstant polynomial over F is a product of linearfactors. Let E/F be an algebraic extension. Then all the simple subextensionsF (α)/F of E are necessarily trivial (because the only irreducible polynomials arelinear by assumption). Thus E = F . We see that (4) implies (1) and we aredone. Now we want to define a “universal” algebraic extension of a field. Actually, weshould be careful: the algebraic closure is not a universal object. That is, thealgebraic closure is not unique up to unique isomorphism: it is only unique up toisomorphism. But still, it will be very handy, if not functorial.09GS Let Definition 10.3. F be a field. We say F is algebraically closed if everyalgebraic extension E/F is trivial, i.e., E = F . An algebraic closure of F is a fieldF containing F such that:(1) F is algebraic over F .(2) F is algebraically closed.If F is algebraically closed, then F is its own algebraic closure. We now prove thebasic existence result.09GT Theorem 10.4. Every field has an algebraic closure.The proof will mostly be a red herring to the rest of the chapter. However, we willwant to know that it is possible to embed a field inside an algebraically closed field,and we will often assume it done.FIELDS 12Proof. Let F be a field. By Lemma 8.9 the cardinality of an algebraic extension ofF is bounded by max(ℵ0, |F|). Choose a set S containing F with |S| > max(ℵ0, |F|).Let’s consider triples (E, σE, µE) where(1) E is a set with F ⊂ E ⊂ S, and(2) σE : E×E → E and µE : E×E → E are maps of sets such that (E, σE, µE)defines the structure of a field extension of F (in particular σE(a, b) = a+F bfor a, b ∈ F and similarly for µE), and(3) F ⊂ E is an algebraic field extension.The collection of all triples (E, σE, µE) forms a set I. For i ∈ I we will denoteEi = (Ei, σi, µi) the corresponding field extension to F. We define a partial orderingon I by declaring i ≤ i0 if and only if Ei ⊂ Ei0 (this makes sense as Ei and Ei0 aresubsets of the same set S) and we have σi = σi0|Ei×Ei and µi = µi0|Ei×Ei, in otherwords, Ei0 is a field extension of Ei.Let T ⊂ I be a totally ordered subset. Then it is clear that ET = Si∈T Ei withinduced maps σT = S σi and µT = S µi is another element of I. In other wordsevery totally order subset of I has a upper bound in I. By Zorn’s lemma thereexists a maximal element (E, σE, µE) in I. We claim that E is an algebraic closure.Since by definition of I the extension E/F is algebraic, it suffices to show that Eis algebraically closed.To see this we argue by contradiction. Namely, suppose that E is not algebraicallyclosed. Then there exists an irreducible polynomial P over E of degree > 1, seeLemma 10.2. By Lemma 8.5 we obtain a nontrivial finite extension E0 = E[x]/(P).Observe that E0/F is algebraic by Lemma 8.8. Thus the cardinality of E0 is ≤max(ℵ0, |F|). By elementary set theory we can extend the given injection E ⊂ S toan injection E0 → S. In other words, we may think of E0 as an element of our setI contradicting the maximality of E. This contradiction completes the proof. 09GU Lemma 10.5. Let F be a field. Let F be an algebraic closure of F. Let M/F bean algebraic extension. Then there is a morphism of F-extensions M → F.Proof. Consider the set I of pairs (E, ϕ) where F ⊂ E ⊂ M is a subextension andϕ : E → F is a morphism of F-extensions. We partially order the set I by declaring(E, ϕ) ≤ (E0, ϕ0) if and only if E ⊂ E0 and ϕ0|E = ϕ. If T = {(Et, ϕt)} ⊂ I is atotally ordered subset, then S ϕt : S Et → F is an element of I. Thus every totallyordered subset of I has an upper bound. By Zorn’s lemma there exists a maximalelement (E, ϕ) in I. We claim that E = M, which will finish the proof. If not,then pick α ∈ M, α 6∈ E. The α is algebraic over E, see Lemma 8.4. Let P be theminimal polynomial of α over E. Let P ϕ be the image of P by ϕ in F[x]. SinceF is algebraically closed there is a root β of P ϕ in F. Then we can extend ϕ toϕ0 : E(α) = E[x]/(P) → F by mapping x to β. This contradicts the maximality of(E, ϕ) as desired. 09GV Lemma 10.6. Any two algebraic closures of a field are isomorphic.Proof. Let F be a field. If M and F are algebraic closures of F, then there existsa morphism of F-extensions ϕ : M → F by Lemma 10.5. Now the image ϕ(M) isalgebraically closed. On the other hand, the extension ϕ(M) ⊂ F is algebraic byLemma 8.4. Thus ϕ(M) = F.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
10 . พีชคณิตปิด
09gp " ทฤษฎีบทมูลฐานของพีชคณิต " ระบุว่า ซี คือพีชคณิตปิด . มีหลักฐานการใช้
สวยงามของทฤษฎีบท liouville ในการวิเคราะห์ที่ซับซ้อน จะให้พิสูจน์อีก ( เห็นฟาง

22.1 ) 09gq สนามความละเอียด 10.1 . F เป็นพีชคณิตปิดถ้าทุกพีชคณิต
E / F เป็นส่วนขยายเล็กน้อย ( E = f .
นี้ไม่อาจนิยาม ทุกข้อความ นี่คือรูปแบบการเปรียบเทียบกับอื่น ๆ
.
09gr บทตั้ง 10.2 . ให้ f เป็นสนาม ต่อไปนี้เป็นเทียบเท่า
( 1 ) F คือพีชคณิตปิด
( 2 ) ทุกพหุนามลดทอนไม่ได้มากกว่า F เป็นเชิงเส้น ,
( 3 ) ทุก nonconstant พหุนามกว่า F มีราก ,
( 4 ) ทุก nonconstant พหุนามกว่า F เป็นผลิตภัณฑ์ของปัจจัยเชิงเส้น .
พิสูจน์ถ้า f เป็นพีชคณิตปิดแล้วทุกพหุนามลดทอนไม่ได้เป็นเชิงเส้น .
( หากมีแบบลดระดับ 1 แล้วสร้าง
นอนทริเวียล จำกัด ( พีชคณิตฟิลด์นามสกุล ดังนั้น ) เห็นตัวอย่าง 7.6 . จึงหมายถึง ( 1 )
( 2 ) ถ้าทุกพหุนามลดทอนไม่ได้เป็นเส้นตรง แล้วทุกพหุนามลดทอนไม่ได้มีการราก ซึ่งทุก nonconstant พหุนามมีรากจึงหมายถึง ( 2 ) ( 3 ) .
ถือว่า ทุก nonconstant พหุนามมีราก ให้ P ∈ F [ x ] nonconstant .
ถ้า P ( α ) = 0 ด้วยα∈ F แล้วเราดูว่า P = ( −α X ) Q Q ∈บาง F [ x ] (
กองกับส่วนที่เหลือ ) ดังนั้นเราสามารถโต้แย้งโดยอุปนัยในระดับใด ๆ
nonconstant พหุนามสามารถเขียนเป็นผลิตภัณฑ์ C Q ( x α− i )
ในที่สุดสมมติว่าทุก nonconstant พหุนามกว่า F เป็นผลิตภัณฑ์ของปัจจัยเชิงเส้น

ให้ E / F เป็นส่วนขยายพีชคณิต แล้วทั้งหมดที่ง่าย subextensions
F ( α ) / F e จะต้องเล็กน้อย ( เพราะแค่ลดพหุนามเป็น
เชิงเส้นโดยสมมติฐาน ) ดังนั้น E = F . เราดูที่ ( 4 ) หมายถึง ( 1 ) และเรา
เสร็จแล้ว
ตอนนี้เราต้องการกำหนดส่วนขยายพีชคณิตสากล " ของเขตข้อมูล จริงๆ แล้วเรา
ควรระวัง : พีชคณิตการปิดไม่ใช่วัตถุที่เป็นสากล นั่นคือ
ปิดพีชคณิตไม่เป็นเอกลักษณ์ขึ้นเฉพาะก้อน : มันเป็นเพียงเฉพาะขึ้น

ก้อน . แต่มันจะมีประโยชน์มาก ถ้าไม่ functorial .
09gs ให้ความละเอียด 10.3 . เอฟเป็นฟิลด์ เราว่า F คือพีชคณิตปิดถ้าทุก
พีชคณิตนามสกุล E / F เล็กน้อย ( E = F .การปิดพีชคณิต f เป็นเขต
F ที่มี F เช่นที่ :
( 1 ) F คือพีชคณิตมากกว่า F .
( 2 ) F คือพีชคณิตปิด .
ถ้า f คือพีชคณิตปิดแล้ว f เป็นพีชคณิตการปิดของมันเอง ตอนนี้เราพิสูจน์

" การดำรงอยู่ขั้นพื้นฐาน 09gt ทฤษฎีบท 10.4 . ทุกสาขามีการปิดพีชคณิต
หลักฐานส่วนใหญ่จะเป็นปลาชนิดหนึ่งสีแดง กับส่วนที่เหลือของบทที่ อย่างไรก็ตาม เราจะ
อยากทราบว่ามันเป็นไปได้ที่จะฝังสนามภายในสนามปิดพีชคณิต
, และเราจะมักจะถือว่าจบแล้ว เขต 12

หลักฐาน ให้ f เป็นสนาม โดยแทรก 8.9 มีภาวะเชิงการนับของส่วนขยายพีชคณิต
F เป็นที่สิ้นสุดโดยแม็กซ์ ( ℵ 0 | F | ) เลือกชุด S ที่มี F กับ | S | > แม็กซ์ ( ℵ 0 | F | )
ให้พิจารณาอเนกประสงค์ ( E , σ E , µ e )
( 1 ) E ที่เป็นชุดกับ F ⊂ E ⊂ S ,
( 2 ) σ E :E × e → keyboard - key - name E และµ E : E × e → keyboard - key - name e แผนที่ชุดดังกล่าว ( E , σ E , µ e )
นิยามโครงสร้างของเขตส่งเสริมของ f ( E σโดยเฉพาะ ( A , B ) = F B
สำหรับ A , B ∈ F และในทำนองเดียวกันสำหรับµและ E )
( 3 ) F ⊂ E เป็นฟิลด์พีชคณิตนามสกุล .
คอลเลกชันทั้งหมดของอเนกประสงค์ ( E , σ E , µ E ) รูปแบบชุดฉันฉันฉันจะแสดง∈
EI = ( Ei σผมµ ) เขตที่ส่งเสริมให้
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: