Biotransformation Sites
Biotransforming enzymes are widely distributed throughout the body. However, the liver is the primary biotransforming organ due to its large size and high concentration of biotransforming enzymes. The kidneys and lungs are next with 10-30% of the liver's capacity. A low capacity exists in the skin, intestines, testes, and placenta. Since the liver is the primary site for biotransformation, it is also potentially quite vulnerable to the toxic action of a xenobiotic that is activated to a more toxic compound.
Within the liver cell, the primary subcellular components that contain the transforming enzymes are the microsomes (small vesicles) of the endoplasmic reticulum and the soluble fraction of the cytoplasm (cytosol). The mitochondria, nuclei, and lysosomes contain a small level of transforming activity.
Microsomal enzymes are associated with most Phase I reactions. Glucuronidation enzymes, however, are contained in microsomes. Cytosolic enzymes are non-membrane-bound and occur free within the cytoplasm. They are generally associated with Phase II reactions, although some oxidation and reduction enzymes are contained in the cytosol. The most important enzyme system involved in Phase I reactions it the cytochrome P-450 enzyme system. This system is frequently referred to as the "mixed function oxidase (MFO) " system. It is found in microsomes and is responsible for oxidation reactions of a wide array of chemicals.
The fact that the liver biotransforms most xenobiotics and that it receives blood directly from the gastrointestinal tract renders it particularly susceptible to damage by ingested toxicants. Blood leaving the gastrointestinal tract does not directly flow into the general circulatory system. Instead, it flows into the liver first via the portal vein. This is known as the "first pass" phenomena. Blood leaving the liver is eventually distributed to all other areas of the body; however, much of the absorbed xenobiotic has undergone detoxication or bioactivation. Thus, the liver may have removed most of the potentially toxic chemical. On the other hand, some toxic metabolites are in high concentration in the liver.
Modifiers of Biotransformation
The relative effectiveness of biotransformation depends on several factors, including species, age, gender, genetic variability, nutrition, disease, exposure to other chemicals that can inhibit or induce enzymes, and dose levels. Differences in species capability to biotransform specific chemicals are well known. Such differences are normally the basis for selective toxicity, used to develop chemicals effective as pesticides but relatively safe in humans. For example, malathion in mammals is biotransformed by hydrolysis to relatively safe metabolites, but in insects, it is oxidized to malaoxon, which is lethal to insects.
Safety testing of pharmaceuticals, environmental and occupational substances is conducted with laboratory animals. Often, differences between animal and human biotransformation are not known at the time of initial laboratory testing since information is lacking in humans. Humans have a higher capacity for glutamine conjugation than laboratory rodents. Otherwise, the types of enzymes and biotransforming reactions are basically comparable. For this reason, determination of biotransformation of drugs and other chemicals using laboratory animals is an accepted procedure in safety testing.
Age may affect the efficiency of biotransformation. In general, human fetuses and neonates (newborns) have limited abilities for xenobiotic biotransformations. This is due to inherent deficiencies in many, but not all, of the enzymes responsible for catalyzing Phase I and Phase II biotransformations. While the capacity for biotransformation fluctuates with age in adolescents, by early adulthood the enzyme activities have essentially stabilized. Biotransformation capability is also decreased in the aged. Gender may influence the efficiency of biotransformation for specific xenobiotics. This is usually limited to hormone-related differences in the oxidizing cytochrome P-450 enzymes.
Genetic variability in biotransforming capability accounts for most of the large variation among humans. The Phase II acetylation reaction in particular is influenced by genetic differences in humans. Some persons are rapid and some are slow acetylators. The most serious drug-related toxicity occurs in the slow acetylators, often referred to as "slow metabolizers". With slow acetylators, acetylation is so slow that blood or tissue levels of certain drugs (or Phase I metabolites) exceeds their toxic threshold.