Description: This project is the latest development in an ongoing area of research into cellular aggregate structures that has examined honeycomb and voronoi geometries and their ability to produce interesting structural, thermal, and visual performances. The voronoi algorithm is used in a wide range of fields including satellite navigation, animal habitat mapping, and urban planning as it can easily adapt to local contingent conditions. Within our research, it is used as a tool to facilitate the translation and materialization of data from particle-simulations and other point-based data. Through this operation, points are transformed into volumetric cells which can be unfolded, CNC cut, and reassembled into larger aggregates.